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Magnetron sputtering is a physical vapor deposition (PVD) process which is a type of vacuum 
deposition method used for development of thin �lms. In PVD, vapor of material is mainly produced 
by two methods, which is heating and sputtering. This vapor material gets deposited on to the 
substrate material in the presence of vacuum. As magnetron sputtering, having di�erent 
con�gurations, is widely used in di�erent research areas, attempts have been made to provide 
detailed review of recent advancement in magnetron sputtering methods and its applications. 
Di�erent con�gurations of magnetron sputtering process such as closed �eld unbalanced magnetron 
sputtering (CFUBMS), pulsed closed �eld magnetron sputtering (P-CFUBMS), high power impulse 
magnetron sputtering (HiPIMS) and Deep oscillation magnetron sputtering (DOMS) are discussed. 
HiPIMS and DOMS are the most researched techniques for deposition of high quality and well 
adhered coatings in recent trends. Process parameters a�ecting �lm deposition are also listed in this 
paper. Majorly, this paper will outline recent applications of magnetron sputtering in Micro electro 
mechanical systems (MEMS), lithium sulfur batteries, biomedical implants and instruments, 
supercapacitors, tribology and many more for improvement of mechanical, optical, biomedical and 
electrical properties
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Sputtering is the process in which material is deposited on the 
substrate by vaporizing material from the target. It is the process 
in which momentum exchange takes place due to collisions 
between the energetic ions and atoms. In this, vacuum is 
required which extends formation time for oxides and reduces 
impurities contamination. For the purpose of thin �lm 
deposition, various sputtering techniques are available, among 
these dc diodes sputtering systems is the basic model. 
Remaining systems are improvements on the dc diode 
sputtering system. In the dc diode sputtering system one of the 
electrodes is an anode and the other is cathode covered with 
metal target material. If the target material is insulator, the dc 
power supply is replaced by a radio frequency (RF) power 
supply to sustain sputtering glow discharge [1]. Many materials 
have been deposited by the basic sputtering process, but it has 
limitations like low deposition rate, high substrate heating 
temperature and low ionization e�ciency in the plasma. �e 
term plasma is composed of particles such as electrons and 
ionized atoms, where a particle's electric charge becomes 
neutral. Based on temperature plasma can be divided in two 
types, one is low temperature plasma, generated at low pressure 
environment by the providing electric energy to a gas, and the 
other is high temperature plasma, which evolves in an 
environment greater than 10,000 °C. Plasma is important as it 
provides the environment for deposition and also used for 

etching, ion implantation and epitaxy [2]. During sputtering, to 
extend the lifespan of electrons escaping from cathode, Penning 
had suggested the use of magnetic �elds in the 1930s [3]. Later, 
advancement in this concept led to the method known as 
magnetron sputtering. Magnetron sputtering method is being 
developed rapidly in the last three decades where it has become 
an important technique for the deposition of thin �lm for 
various purposes.  In this method, an electromagnet and 
permanent magnet or combination of both can be used to create 
a magnetic �eld [4,5]. Limitation of the basic sputtering process 
is improved by the magnetron sputtering process and its 
di�erent con�gurations. 

 Plasma con�nement is the main factor that makes a 
di�erence among all the processes. In conventional magnetrons, 
the magnetic core is the end point for magnetic �ux generated 
from a cathode which is called a balanced magnetron as shown 
in �gure 1(a). Whereas, unbalanced magnetrons have di�erent 
degrees of plasma con�nement in which an additional magnetic 
�eld is applied to the balanced magnetron as shown in �gure 
1(b) [1]. In a balanced magnetron, the target region is the place 
where plasma is con�ned, which extends dense plasma about 60 
mm in front of the target. In this process substrate inside this 
region gets deposited which results in modi�cation of 
properties and microstructure of thin �lm, whereas substrate 
outside this region lacks su�cient ion bombardment to alter the 

properties and microstructure of thin �lm. An unbalanced 
magnetron is the solution for this problem. �e second 
limitation of sputtering technique is the inability to deposit 
dense and defect free coating such as oxides and medical 
implant coating. �is advantage is obtained by the method 
known as pulsed closed �eld magnetron sputtering technique 
[6]. So now, in the next topic we will continue our discussion 
regarding recent con�gurations of magnetron sputtering and 
their advantages.

10-6 to 10-8 of an atmospheres, controlled �ow of gas like argon 
(inert gas) and oxygen (reactive gas) which raises the pressure to 
the prerequisite level, the power in the form of DC or RF (13.56 
MHz) which provides voltage about 300V to operate the 
magnetrons. It uses magnets behind the negatively charged 
target material to control ion bombardment which results in 
faster deposition rates[7,8].

complex shapes [12]. In multiple magnetron systems di�erent 
polarities are set to obtain di�erent con�gurations such as 
“mirrored” and “closed �eld”. Both the con�gurations are shown 
in (Figure 4). As shown in mirror-�eld con�guration, �eld lines 
are moving towards the chamber wall and result in loss of 
plasma. However closed �eld con�guration �eld lines are 
moving towards target materials or magnetrons which will 
result in dense plasma generation and losses to the chamber are 
less. �e e�ectiveness of closed �eld (CFUBMS) con�guration 
compared to Unbalanced (UBMS) and Mirror �eld (MFUBMS) 
is shown in (Figure 5) [13,14]. For large cylindrical targets, 
rotating magnetrons are used for coating. In this con�guration,  
the rotating tube is a cathode target and  inside the cylinder 
magnetic assembly is available[15]. 
        

 To overcome problems faced during deposition of 
insulating �lm using reactive sputtering, pulsed magnetron 
sputtering is used. A pulsed magnetron system has di�erent 
con�gurations such as a symmetric bi-polar pulsed, unipolar 
pulsed and high-power impulse magnetron system. High power 
impulse magnetron sputtering (HiPIMS) prevents arcing, 
provides more stable discharge ignition and also reduces the 
working gas pressure in vacuum chamber [16]. Detailed 
comparison between cathodic arc and HiPIMS technique was 
given by Andre Anders in his published work [17]. In the pulsed 
closed �eld unbalanced magnetron sputtering (P-CFUBMS) 
method, electrons are con�ned in the plasma by magnetic �eld 
lines between magnetrons and increase ion density which leads 
to high level of ion bombardment. �is process can also be used 
to deposit alloy nitrides, oxides and carbides with the required 
composition and multilayer deposition by controlling the 
power density on multiple targets and partial pressure of 
reactive gas. However, a limited amount of research has been 
conducted on P-CFUBMS in reactive sputtering [18,19]. 
According to Avino et al., densi�cation in the coating of objects 
can be improved using HiPIMS compared to direct current 
magnetron sputtering [20]. Recently, a new method is 
developed named the dual mode of deep oscillation magnetron 
sputtering (DOMS). �e dual mode magnetron sputtering 
system solves the problem of disappearing anode, which arises 
in reactive sputtering of dielectric coating. A bipolar power 
source can be implemented in Dual DOMS to avoid long 
intervals between micropulses. V.O. Oskirko et al. provided 
schematic of DOMS and dual DOMS modes with voltage 
impulse curves as shown in (Figure 6) [21].

 If we summarize, it can be written as dual target mode of 
deep oscillation magnetron sputtering provides advantages over 
high power impulse magnetron sputtering and high-power 
impulse magnetron sputtering provides advantages over direct 
current magnetron sputtering. 

Parameters Affecting Magnetron Sputtering
Main parameters a�ecting the sputtering process are: 
Sputtering power, vacuum, sputtering gas, pressure inside 
chamber, distance between substrate and target material, 
temperature of substrate, target composition and magnets 
con�guration [22,23]. According to P. Chelvanathan and his 
colleagues, during deposition of Mo thin �lm, growth rate was 
higher for higher RF Power and operating pressure. Higher 
kinetic energy of incident Mo atoms during deposition 
improves the crystallinity property [24].  M. Zhijun et al. has 
considered di�erent sputtering parameters such as power, 
pressure, time, thickness and deposition rate. From his results it 
was observed that keeping power and deposition time constant, 
pressure and thickness obtained a�er deposition decreases. 
While keeping pressure and deposition constant, as power 
decreases there is slight increment and decrement in the 
thickness achieved by this process [25]. Energy is the main 
factor responsible for  mechanical and physical properties of 
sputter �lms including their behavior to resist the crack and to 
enable their useful production [26]. Let us limit the discussion 
regarding the e�ect of process parameters on �lm deposition as 
it is a very wide area which depends on application of 
magnetron sputtering.

Recent Development and Applications
Most recent applications of magnetron sputtering are in the 
�eld of Micro electro mechanical systems (MEMS), lithium 
sulfur batteries, super capacitors, tribology, solar cell, textile 
industries, biomedical implants and instruments. Most of the 
processes related with water need to have proper pH 
monitoring. Most of the chemical materials including blood in 
our body requires pH controlling in the range of 7.35 to 7.45. 
Exceeding pH, results in serious problems. Typically, Metal 
oxide-based pH sensors have found their applications in 
chemical and biological �elds. �ey consist of attractive features 
such as insolubility, better sensing range, stability and 
mechanical strength. Metal oxides deposited by RF magnetron 
sputtering provides better PH sensitivity, fast response, good 
resolution and it also provides perspective for measuring pH 
which cannot be measured by glass electrode based pH sensors 
[27].    Mwema published a detailed review on application of 
Aluminium Nitride (AlN) thin �lms for harsh operating 
conditions, such as operating components under extreme shock 
loads, high temperature, corrosive environment and high 
pressure and forces. To measure above parameters di�erent 
MEMS are available such as acoustic sensors, transducers, 
resonators and energy harvesters. Ceramic materials AlN have 
been deposited on various metallic and nonmetallic substrates 
for various sensing applications using RF magnetron sputtering 
[28]. Research was also carried out by depositing titanium 
nitride (TiN) thin �lms onto Si and Si/SiO2 substrate by reactive 
pulsed DC magnetron sputtering for localized heating 
applications in MEMS devices [29]. Structural and optical 
properties were also improved by this process [30]. As 
nowadays we are using multi colored glasses, these can be 
obtained by multilayer coating of glasses. According to Yuan, it 
is possible to develop super hydrophobic �lm on glass which 
provides contact angle neary168.9°, which provides low surface 
energy, good stability under outdoor and ambient 
environments [31]. Zr-Cu-Ag thin �lm provides antibacterial 
coating for biomedical instruments which is amorphous, 
uniformly thick, and chemically homogeneous [32]. NiAl and 
NiAlN thin �lm was also obtained using closed �eld unbalanced 
magnetron sputtering which were deposited on glass and SS 
316L material which improves biological properties of material 
such as corrosion resistance, friction and hardness [33]. 
Properties of material can also be changed by this method such 
as orientation of Cr was changed from (110) to (200) by the 
power density which results in non-cracking behavior less than 
15N [34]. Recently target poisoning evolution is done by the 
magnetron sputtering process [35]. Rare earth material such as 
terbium is deposited on Si material which is investigated for 
optical properties and composition of terbium doped silicon 
oxide thin �lms [36]. 

 Biomedical implants made from Ti, SS 316L and CoCrMo 
alloys require hydroxyapatite coating to improve 
biocompatibility and osseointegration. RF magnetron 
sputtering provides uniform coating thickness between 0.2-1 
µm on �at surfaces result into better osseointegration with 
bones. It has also certain disadvantages like this is line of sight 
technique, time consuming, cannot coat complex substrates and 
produces amorphous coatings [37-39]. AISI 316L austenitic 

stainless steel is widely used for manufacturing of medical 
implants due to low cost, corrosion resistance and good fatigue 
strength [40]. However, these steels are prone to attack due to 
aggressive biological e�ects. To overcome this problem Ti 
coating is done on to the material in order to get good 
mechanical and corrosion resistance properties. �is process is 
also useful for material which require harder surface on outer 
side but so�er from inside. So, this can be achieved by 
depositing thin �lm of hard material such as titanium on the 
surface of the substrate. Presently there is eminent interest for 
the development of coating of transition metal nitride owing to 
its properties such as intrinsic biocompatibility, wear resistance 
and chemical stability. As the deposition of TiN coating requires 
low level of impurities and control of deposition rate, this can be 
achieved by magnetron sputtering by varying morphology and 
various crystallographic structure[41]. DLC (Diamond like 
carbon) coatings provides higher hardness, better wear 
resistance and low friction on Cr3C2-NiCr this can be achieved 
by Closed Field Unbalanced Magnetron Sputtering (CFUBMS). 
�e duplex coating using this technique maintains a stable 
coe�cient of friction and improves tribological performance 
[42]. Nowadays, conventional coating is replaced by use of 
composite coating, allowing combination of required 
properties. Lenis et al., deposited multilayer hydroxyapatite-Ag/ 
TiN-Ti coating on Ti6Al4V to make it usable for manufacturing 
of surgical instruments. Schematic architecture of developed 
multilayer coating is shown in �gure 7 [43]. Research on TiAlN 
(Ag,Cu) coating on AISI 420 steel was also carried out to make 
it suitable for applications in surgical and dental 
instrumentation by improving wear and corrosion resistance. 
According to Hernan et al., the lowest wear volume of 7.7 × 10-5 
mm3 was exhibited by coating AISI 420 steel with 17 at.% 
Ag-Cu [44,45].

paper through magnetron sputtering and used that to fabricate 
interlayers for lithium sulfur batteries to improve performance 
[46]. Recently, Shijian Yan suggested use of magnetron 
sputtering to fabricate cathode plates by reducing sulfur particle 
size for lithium sulfur batteries. �is approach simpli�ed the 
process and provided good results compared to traditional 
technologies as sulfur and carbon particles combined well 
without addition of binders. Schematic illustration to prepare 
cathode plate is given in (Figure 8) [47]. Sunlight is the most 
reliable and clean energy source available in the world which 
could be converted into useful energy. Solar cells are one of the 
devices which converts solar energy into electrical energy. Many 
researchers have experimented to improve the performance of 
solar cells by providing thin �lm of Mo, metal oxides such as 
TiO2, ZnO, Fe-Ga doped ZnO, reduce graphene oxide TiO2 
(rgo-TiO2) etc. In 1995, Sco�eld et al. suggested Mo as leading 
choice for the Copper Indium diselenide (CIS) and Copper 
Indium Gallium diselenide (CIGS) solar cells. Rashid et al. also 
deposited Mo on top of soda lime glass (SLG) using DC 
magnetron sputtering and proposed that 100W is optimized 
power to grow thin �lms on SLG as back contact material for 
fabrication of CIS and CIGS based solar cell devices [48]. Zheng 
et al. deposited Fe-Ga doped ZnO (FGZO) on glass substrates 
using RF magnetron sputtering to improve power conversion 
e�ciency of solar cells. According to him, FGZO thin �lm 
formed at substrate temperature of 440 °C resulted in the 
increase in power conversion e�ciency of 15.32% [49]. Another 
important device are the energy storage devices such as 
capacitors. Magnetron sputtering again �nds its application in 
this �eld also. Zhang et al. proposed a new method to prepare 
3D porous electrode materials based on graphene for 
application in supercapacitors. High conductivity and high 
contact interaction was observed between Co3O4 array and 
graphene a�er depositing by magnetron sputtering on Ni foam 
[50]. Mohd. Arif et al. also suggested thin �lm coating of TiN 
using DC magnetron sputtering on 304L steel substrate to make 
it suitable for super capacitor devices [51]. In addition to above 
all �elds, magnetron sputtering is also researched in the textile 
industries to develop antimicrobial textiles. Y.H. Chen et al. 
deposited antimicrobial brass coating on PET (Poly ethylene 
terephthalate) textile by HiPIMS [52]. 

Conclusions
Magnetron sputtering is a physical deposition technique which 
helps to deposit thin �lm of required materials such as metal, 
nonmetals, carbide, nitride, oxide and ceramic such as 
hydroxyapatite. From all di�erent magnetron sputtering 
con�gurations, HiPIMS and DOMS are widely used methods as 
it provides high density plasma and generates strongly adherent 
�lm at low substrate temperature. By controlling di�erent 
parameters a�ecting the sputtering process one can change 
morphology and properties of material which are bene�cial for 
mechanical, optical, electrical and biomedical applications. �e 
most important parameter is selection of power source which 
may be DC or RF depending on material. RF power source is 
useful when material to be deposited is insulating material. 
Discussion of most recent applications in the �eld of MEMS, 
lithium sulfur batteries, supercapacitors, biomedical implants 
and instruments, tribology and textile industries in the current 
study will help researchers to understand current research areas 
and to select future research directions as per their requirement. 
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Sputtering is the process in which material is deposited on the 
substrate by vaporizing material from the target. It is the process 
in which momentum exchange takes place due to collisions 
between the energetic ions and atoms. In this, vacuum is 
required which extends formation time for oxides and reduces 
impurities contamination. For the purpose of thin �lm 
deposition, various sputtering techniques are available, among 
these dc diodes sputtering systems is the basic model. 
Remaining systems are improvements on the dc diode 
sputtering system. In the dc diode sputtering system one of the 
electrodes is an anode and the other is cathode covered with 
metal target material. If the target material is insulator, the dc 
power supply is replaced by a radio frequency (RF) power 
supply to sustain sputtering glow discharge [1]. Many materials 
have been deposited by the basic sputtering process, but it has 
limitations like low deposition rate, high substrate heating 
temperature and low ionization e�ciency in the plasma. �e 
term plasma is composed of particles such as electrons and 
ionized atoms, where a particle's electric charge becomes 
neutral. Based on temperature plasma can be divided in two 
types, one is low temperature plasma, generated at low pressure 
environment by the providing electric energy to a gas, and the 
other is high temperature plasma, which evolves in an 
environment greater than 10,000 °C. Plasma is important as it 
provides the environment for deposition and also used for 

etching, ion implantation and epitaxy [2]. During sputtering, to 
extend the lifespan of electrons escaping from cathode, Penning 
had suggested the use of magnetic �elds in the 1930s [3]. Later, 
advancement in this concept led to the method known as 
magnetron sputtering. Magnetron sputtering method is being 
developed rapidly in the last three decades where it has become 
an important technique for the deposition of thin �lm for 
various purposes.  In this method, an electromagnet and 
permanent magnet or combination of both can be used to create 
a magnetic �eld [4,5]. Limitation of the basic sputtering process 
is improved by the magnetron sputtering process and its 
di�erent con�gurations. 

 Plasma con�nement is the main factor that makes a 
di�erence among all the processes. In conventional magnetrons, 
the magnetic core is the end point for magnetic �ux generated 
from a cathode which is called a balanced magnetron as shown 
in �gure 1(a). Whereas, unbalanced magnetrons have di�erent 
degrees of plasma con�nement in which an additional magnetic 
�eld is applied to the balanced magnetron as shown in �gure 
1(b) [1]. In a balanced magnetron, the target region is the place 
where plasma is con�ned, which extends dense plasma about 60 
mm in front of the target. In this process substrate inside this 
region gets deposited which results in modi�cation of 
properties and microstructure of thin �lm, whereas substrate 
outside this region lacks su�cient ion bombardment to alter the 

properties and microstructure of thin �lm. An unbalanced 
magnetron is the solution for this problem. �e second 
limitation of sputtering technique is the inability to deposit 
dense and defect free coating such as oxides and medical 
implant coating. �is advantage is obtained by the method 
known as pulsed closed �eld magnetron sputtering technique 
[6]. So now, in the next topic we will continue our discussion 
regarding recent con�gurations of magnetron sputtering and 
their advantages.

10-6 to 10-8 of an atmospheres, controlled �ow of gas like argon 
(inert gas) and oxygen (reactive gas) which raises the pressure to 
the prerequisite level, the power in the form of DC or RF (13.56 
MHz) which provides voltage about 300V to operate the 
magnetrons. It uses magnets behind the negatively charged 
target material to control ion bombardment which results in 
faster deposition rates[7,8].

complex shapes [12]. In multiple magnetron systems di�erent 
polarities are set to obtain di�erent con�gurations such as 
“mirrored” and “closed �eld”. Both the con�gurations are shown 
in (Figure 4). As shown in mirror-�eld con�guration, �eld lines 
are moving towards the chamber wall and result in loss of 
plasma. However closed �eld con�guration �eld lines are 
moving towards target materials or magnetrons which will 
result in dense plasma generation and losses to the chamber are 
less. �e e�ectiveness of closed �eld (CFUBMS) con�guration 
compared to Unbalanced (UBMS) and Mirror �eld (MFUBMS) 
is shown in (Figure 5) [13,14]. For large cylindrical targets, 
rotating magnetrons are used for coating. In this con�guration,  
the rotating tube is a cathode target and  inside the cylinder 
magnetic assembly is available[15]. 
        

 To overcome problems faced during deposition of 
insulating �lm using reactive sputtering, pulsed magnetron 
sputtering is used. A pulsed magnetron system has di�erent 
con�gurations such as a symmetric bi-polar pulsed, unipolar 
pulsed and high-power impulse magnetron system. High power 
impulse magnetron sputtering (HiPIMS) prevents arcing, 
provides more stable discharge ignition and also reduces the 
working gas pressure in vacuum chamber [16]. Detailed 
comparison between cathodic arc and HiPIMS technique was 
given by Andre Anders in his published work [17]. In the pulsed 
closed �eld unbalanced magnetron sputtering (P-CFUBMS) 
method, electrons are con�ned in the plasma by magnetic �eld 
lines between magnetrons and increase ion density which leads 
to high level of ion bombardment. �is process can also be used 
to deposit alloy nitrides, oxides and carbides with the required 
composition and multilayer deposition by controlling the 
power density on multiple targets and partial pressure of 
reactive gas. However, a limited amount of research has been 
conducted on P-CFUBMS in reactive sputtering [18,19]. 
According to Avino et al., densi�cation in the coating of objects 
can be improved using HiPIMS compared to direct current 
magnetron sputtering [20]. Recently, a new method is 
developed named the dual mode of deep oscillation magnetron 
sputtering (DOMS). �e dual mode magnetron sputtering 
system solves the problem of disappearing anode, which arises 
in reactive sputtering of dielectric coating. A bipolar power 
source can be implemented in Dual DOMS to avoid long 
intervals between micropulses. V.O. Oskirko et al. provided 
schematic of DOMS and dual DOMS modes with voltage 
impulse curves as shown in (Figure 6) [21].

 If we summarize, it can be written as dual target mode of 
deep oscillation magnetron sputtering provides advantages over 
high power impulse magnetron sputtering and high-power 
impulse magnetron sputtering provides advantages over direct 
current magnetron sputtering. 

Parameters Affecting Magnetron Sputtering
Main parameters a�ecting the sputtering process are: 
Sputtering power, vacuum, sputtering gas, pressure inside 
chamber, distance between substrate and target material, 
temperature of substrate, target composition and magnets 
con�guration [22,23]. According to P. Chelvanathan and his 
colleagues, during deposition of Mo thin �lm, growth rate was 
higher for higher RF Power and operating pressure. Higher 
kinetic energy of incident Mo atoms during deposition 
improves the crystallinity property [24].  M. Zhijun et al. has 
considered di�erent sputtering parameters such as power, 
pressure, time, thickness and deposition rate. From his results it 
was observed that keeping power and deposition time constant, 
pressure and thickness obtained a�er deposition decreases. 
While keeping pressure and deposition constant, as power 
decreases there is slight increment and decrement in the 
thickness achieved by this process [25]. Energy is the main 
factor responsible for  mechanical and physical properties of 
sputter �lms including their behavior to resist the crack and to 
enable their useful production [26]. Let us limit the discussion 
regarding the e�ect of process parameters on �lm deposition as 
it is a very wide area which depends on application of 
magnetron sputtering.

Recent Development and Applications
Most recent applications of magnetron sputtering are in the 
�eld of Micro electro mechanical systems (MEMS), lithium 
sulfur batteries, super capacitors, tribology, solar cell, textile 
industries, biomedical implants and instruments. Most of the 
processes related with water need to have proper pH 
monitoring. Most of the chemical materials including blood in 
our body requires pH controlling in the range of 7.35 to 7.45. 
Exceeding pH, results in serious problems. Typically, Metal 
oxide-based pH sensors have found their applications in 
chemical and biological �elds. �ey consist of attractive features 
such as insolubility, better sensing range, stability and 
mechanical strength. Metal oxides deposited by RF magnetron 
sputtering provides better PH sensitivity, fast response, good 
resolution and it also provides perspective for measuring pH 
which cannot be measured by glass electrode based pH sensors 
[27].    Mwema published a detailed review on application of 
Aluminium Nitride (AlN) thin �lms for harsh operating 
conditions, such as operating components under extreme shock 
loads, high temperature, corrosive environment and high 
pressure and forces. To measure above parameters di�erent 
MEMS are available such as acoustic sensors, transducers, 
resonators and energy harvesters. Ceramic materials AlN have 
been deposited on various metallic and nonmetallic substrates 
for various sensing applications using RF magnetron sputtering 
[28]. Research was also carried out by depositing titanium 
nitride (TiN) thin �lms onto Si and Si/SiO2 substrate by reactive 
pulsed DC magnetron sputtering for localized heating 
applications in MEMS devices [29]. Structural and optical 
properties were also improved by this process [30]. As 
nowadays we are using multi colored glasses, these can be 
obtained by multilayer coating of glasses. According to Yuan, it 
is possible to develop super hydrophobic �lm on glass which 
provides contact angle neary168.9°, which provides low surface 
energy, good stability under outdoor and ambient 
environments [31]. Zr-Cu-Ag thin �lm provides antibacterial 
coating for biomedical instruments which is amorphous, 
uniformly thick, and chemically homogeneous [32]. NiAl and 
NiAlN thin �lm was also obtained using closed �eld unbalanced 
magnetron sputtering which were deposited on glass and SS 
316L material which improves biological properties of material 
such as corrosion resistance, friction and hardness [33]. 
Properties of material can also be changed by this method such 
as orientation of Cr was changed from (110) to (200) by the 
power density which results in non-cracking behavior less than 
15N [34]. Recently target poisoning evolution is done by the 
magnetron sputtering process [35]. Rare earth material such as 
terbium is deposited on Si material which is investigated for 
optical properties and composition of terbium doped silicon 
oxide thin �lms [36]. 

 Biomedical implants made from Ti, SS 316L and CoCrMo 
alloys require hydroxyapatite coating to improve 
biocompatibility and osseointegration. RF magnetron 
sputtering provides uniform coating thickness between 0.2-1 
µm on �at surfaces result into better osseointegration with 
bones. It has also certain disadvantages like this is line of sight 
technique, time consuming, cannot coat complex substrates and 
produces amorphous coatings [37-39]. AISI 316L austenitic 

stainless steel is widely used for manufacturing of medical 
implants due to low cost, corrosion resistance and good fatigue 
strength [40]. However, these steels are prone to attack due to 
aggressive biological e�ects. To overcome this problem Ti 
coating is done on to the material in order to get good 
mechanical and corrosion resistance properties. �is process is 
also useful for material which require harder surface on outer 
side but so�er from inside. So, this can be achieved by 
depositing thin �lm of hard material such as titanium on the 
surface of the substrate. Presently there is eminent interest for 
the development of coating of transition metal nitride owing to 
its properties such as intrinsic biocompatibility, wear resistance 
and chemical stability. As the deposition of TiN coating requires 
low level of impurities and control of deposition rate, this can be 
achieved by magnetron sputtering by varying morphology and 
various crystallographic structure[41]. DLC (Diamond like 
carbon) coatings provides higher hardness, better wear 
resistance and low friction on Cr3C2-NiCr this can be achieved 
by Closed Field Unbalanced Magnetron Sputtering (CFUBMS). 
�e duplex coating using this technique maintains a stable 
coe�cient of friction and improves tribological performance 
[42]. Nowadays, conventional coating is replaced by use of 
composite coating, allowing combination of required 
properties. Lenis et al., deposited multilayer hydroxyapatite-Ag/ 
TiN-Ti coating on Ti6Al4V to make it usable for manufacturing 
of surgical instruments. Schematic architecture of developed 
multilayer coating is shown in �gure 7 [43]. Research on TiAlN 
(Ag,Cu) coating on AISI 420 steel was also carried out to make 
it suitable for applications in surgical and dental 
instrumentation by improving wear and corrosion resistance. 
According to Hernan et al., the lowest wear volume of 7.7 × 10-5 
mm3 was exhibited by coating AISI 420 steel with 17 at.% 
Ag-Cu [44,45].

paper through magnetron sputtering and used that to fabricate 
interlayers for lithium sulfur batteries to improve performance 
[46]. Recently, Shijian Yan suggested use of magnetron 
sputtering to fabricate cathode plates by reducing sulfur particle 
size for lithium sulfur batteries. �is approach simpli�ed the 
process and provided good results compared to traditional 
technologies as sulfur and carbon particles combined well 
without addition of binders. Schematic illustration to prepare 
cathode plate is given in (Figure 8) [47]. Sunlight is the most 
reliable and clean energy source available in the world which 
could be converted into useful energy. Solar cells are one of the 
devices which converts solar energy into electrical energy. Many 
researchers have experimented to improve the performance of 
solar cells by providing thin �lm of Mo, metal oxides such as 
TiO2, ZnO, Fe-Ga doped ZnO, reduce graphene oxide TiO2 
(rgo-TiO2) etc. In 1995, Sco�eld et al. suggested Mo as leading 
choice for the Copper Indium diselenide (CIS) and Copper 
Indium Gallium diselenide (CIGS) solar cells. Rashid et al. also 
deposited Mo on top of soda lime glass (SLG) using DC 
magnetron sputtering and proposed that 100W is optimized 
power to grow thin �lms on SLG as back contact material for 
fabrication of CIS and CIGS based solar cell devices [48]. Zheng 
et al. deposited Fe-Ga doped ZnO (FGZO) on glass substrates 
using RF magnetron sputtering to improve power conversion 
e�ciency of solar cells. According to him, FGZO thin �lm 
formed at substrate temperature of 440 °C resulted in the 
increase in power conversion e�ciency of 15.32% [49]. Another 
important device are the energy storage devices such as 
capacitors. Magnetron sputtering again �nds its application in 
this �eld also. Zhang et al. proposed a new method to prepare 
3D porous electrode materials based on graphene for 
application in supercapacitors. High conductivity and high 
contact interaction was observed between Co3O4 array and 
graphene a�er depositing by magnetron sputtering on Ni foam 
[50]. Mohd. Arif et al. also suggested thin �lm coating of TiN 
using DC magnetron sputtering on 304L steel substrate to make 
it suitable for super capacitor devices [51]. In addition to above 
all �elds, magnetron sputtering is also researched in the textile 
industries to develop antimicrobial textiles. Y.H. Chen et al. 
deposited antimicrobial brass coating on PET (Poly ethylene 
terephthalate) textile by HiPIMS [52]. 

Conclusions
Magnetron sputtering is a physical deposition technique which 
helps to deposit thin �lm of required materials such as metal, 
nonmetals, carbide, nitride, oxide and ceramic such as 
hydroxyapatite. From all di�erent magnetron sputtering 
con�gurations, HiPIMS and DOMS are widely used methods as 
it provides high density plasma and generates strongly adherent 
�lm at low substrate temperature. By controlling di�erent 
parameters a�ecting the sputtering process one can change 
morphology and properties of material which are bene�cial for 
mechanical, optical, electrical and biomedical applications. �e 
most important parameter is selection of power source which 
may be DC or RF depending on material. RF power source is 
useful when material to be deposited is insulating material. 
Discussion of most recent applications in the �eld of MEMS, 
lithium sulfur batteries, supercapacitors, biomedical implants 
and instruments, tribology and textile industries in the current 
study will help researchers to understand current research areas 
and to select future research directions as per their requirement. 
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Figure 1. (a) Balanced Magnetron (b) Unbalanced Magnetron [1]

Figure 2. Schematic diagram of  Magnetron sputtering Machine [11]

Figure 3. Plasma Confinement observed in conventional and 
unbalanced magnetron [6]
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Sputtering is the process in which material is deposited on the 
substrate by vaporizing material from the target. It is the process 
in which momentum exchange takes place due to collisions 
between the energetic ions and atoms. In this, vacuum is 
required which extends formation time for oxides and reduces 
impurities contamination. For the purpose of thin �lm 
deposition, various sputtering techniques are available, among 
these dc diodes sputtering systems is the basic model. 
Remaining systems are improvements on the dc diode 
sputtering system. In the dc diode sputtering system one of the 
electrodes is an anode and the other is cathode covered with 
metal target material. If the target material is insulator, the dc 
power supply is replaced by a radio frequency (RF) power 
supply to sustain sputtering glow discharge [1]. Many materials 
have been deposited by the basic sputtering process, but it has 
limitations like low deposition rate, high substrate heating 
temperature and low ionization e�ciency in the plasma. �e 
term plasma is composed of particles such as electrons and 
ionized atoms, where a particle's electric charge becomes 
neutral. Based on temperature plasma can be divided in two 
types, one is low temperature plasma, generated at low pressure 
environment by the providing electric energy to a gas, and the 
other is high temperature plasma, which evolves in an 
environment greater than 10,000 °C. Plasma is important as it 
provides the environment for deposition and also used for 

etching, ion implantation and epitaxy [2]. During sputtering, to 
extend the lifespan of electrons escaping from cathode, Penning 
had suggested the use of magnetic �elds in the 1930s [3]. Later, 
advancement in this concept led to the method known as 
magnetron sputtering. Magnetron sputtering method is being 
developed rapidly in the last three decades where it has become 
an important technique for the deposition of thin �lm for 
various purposes.  In this method, an electromagnet and 
permanent magnet or combination of both can be used to create 
a magnetic �eld [4,5]. Limitation of the basic sputtering process 
is improved by the magnetron sputtering process and its 
di�erent con�gurations. 

 Plasma con�nement is the main factor that makes a 
di�erence among all the processes. In conventional magnetrons, 
the magnetic core is the end point for magnetic �ux generated 
from a cathode which is called a balanced magnetron as shown 
in �gure 1(a). Whereas, unbalanced magnetrons have di�erent 
degrees of plasma con�nement in which an additional magnetic 
�eld is applied to the balanced magnetron as shown in �gure 
1(b) [1]. In a balanced magnetron, the target region is the place 
where plasma is con�ned, which extends dense plasma about 60 
mm in front of the target. In this process substrate inside this 
region gets deposited which results in modi�cation of 
properties and microstructure of thin �lm, whereas substrate 
outside this region lacks su�cient ion bombardment to alter the 

properties and microstructure of thin �lm. An unbalanced 
magnetron is the solution for this problem. �e second 
limitation of sputtering technique is the inability to deposit 
dense and defect free coating such as oxides and medical 
implant coating. �is advantage is obtained by the method 
known as pulsed closed �eld magnetron sputtering technique 
[6]. So now, in the next topic we will continue our discussion 
regarding recent con�gurations of magnetron sputtering and 
their advantages.

10-6 to 10-8 of an atmospheres, controlled �ow of gas like argon 
(inert gas) and oxygen (reactive gas) which raises the pressure to 
the prerequisite level, the power in the form of DC or RF (13.56 
MHz) which provides voltage about 300V to operate the 
magnetrons. It uses magnets behind the negatively charged 
target material to control ion bombardment which results in 
faster deposition rates[7,8].

complex shapes [12]. In multiple magnetron systems di�erent 
polarities are set to obtain di�erent con�gurations such as 
“mirrored” and “closed �eld”. Both the con�gurations are shown 
in (Figure 4). As shown in mirror-�eld con�guration, �eld lines 
are moving towards the chamber wall and result in loss of 
plasma. However closed �eld con�guration �eld lines are 
moving towards target materials or magnetrons which will 
result in dense plasma generation and losses to the chamber are 
less. �e e�ectiveness of closed �eld (CFUBMS) con�guration 
compared to Unbalanced (UBMS) and Mirror �eld (MFUBMS) 
is shown in (Figure 5) [13,14]. For large cylindrical targets, 
rotating magnetrons are used for coating. In this con�guration,  
the rotating tube is a cathode target and  inside the cylinder 
magnetic assembly is available[15]. 
        

 To overcome problems faced during deposition of 
insulating �lm using reactive sputtering, pulsed magnetron 
sputtering is used. A pulsed magnetron system has di�erent 
con�gurations such as a symmetric bi-polar pulsed, unipolar 
pulsed and high-power impulse magnetron system. High power 
impulse magnetron sputtering (HiPIMS) prevents arcing, 
provides more stable discharge ignition and also reduces the 
working gas pressure in vacuum chamber [16]. Detailed 
comparison between cathodic arc and HiPIMS technique was 
given by Andre Anders in his published work [17]. In the pulsed 
closed �eld unbalanced magnetron sputtering (P-CFUBMS) 
method, electrons are con�ned in the plasma by magnetic �eld 
lines between magnetrons and increase ion density which leads 
to high level of ion bombardment. �is process can also be used 
to deposit alloy nitrides, oxides and carbides with the required 
composition and multilayer deposition by controlling the 
power density on multiple targets and partial pressure of 
reactive gas. However, a limited amount of research has been 
conducted on P-CFUBMS in reactive sputtering [18,19]. 
According to Avino et al., densi�cation in the coating of objects 
can be improved using HiPIMS compared to direct current 
magnetron sputtering [20]. Recently, a new method is 
developed named the dual mode of deep oscillation magnetron 
sputtering (DOMS). �e dual mode magnetron sputtering 
system solves the problem of disappearing anode, which arises 
in reactive sputtering of dielectric coating. A bipolar power 
source can be implemented in Dual DOMS to avoid long 
intervals between micropulses. V.O. Oskirko et al. provided 
schematic of DOMS and dual DOMS modes with voltage 
impulse curves as shown in (Figure 6) [21].

 If we summarize, it can be written as dual target mode of 
deep oscillation magnetron sputtering provides advantages over 
high power impulse magnetron sputtering and high-power 
impulse magnetron sputtering provides advantages over direct 
current magnetron sputtering. 

Parameters Affecting Magnetron Sputtering
Main parameters a�ecting the sputtering process are: 
Sputtering power, vacuum, sputtering gas, pressure inside 
chamber, distance between substrate and target material, 
temperature of substrate, target composition and magnets 
con�guration [22,23]. According to P. Chelvanathan and his 
colleagues, during deposition of Mo thin �lm, growth rate was 
higher for higher RF Power and operating pressure. Higher 
kinetic energy of incident Mo atoms during deposition 
improves the crystallinity property [24].  M. Zhijun et al. has 
considered di�erent sputtering parameters such as power, 
pressure, time, thickness and deposition rate. From his results it 
was observed that keeping power and deposition time constant, 
pressure and thickness obtained a�er deposition decreases. 
While keeping pressure and deposition constant, as power 
decreases there is slight increment and decrement in the 
thickness achieved by this process [25]. Energy is the main 
factor responsible for  mechanical and physical properties of 
sputter �lms including their behavior to resist the crack and to 
enable their useful production [26]. Let us limit the discussion 
regarding the e�ect of process parameters on �lm deposition as 
it is a very wide area which depends on application of 
magnetron sputtering.

Recent Development and Applications
Most recent applications of magnetron sputtering are in the 
�eld of Micro electro mechanical systems (MEMS), lithium 
sulfur batteries, super capacitors, tribology, solar cell, textile 
industries, biomedical implants and instruments. Most of the 
processes related with water need to have proper pH 
monitoring. Most of the chemical materials including blood in 
our body requires pH controlling in the range of 7.35 to 7.45. 
Exceeding pH, results in serious problems. Typically, Metal 
oxide-based pH sensors have found their applications in 
chemical and biological �elds. �ey consist of attractive features 
such as insolubility, better sensing range, stability and 
mechanical strength. Metal oxides deposited by RF magnetron 
sputtering provides better PH sensitivity, fast response, good 
resolution and it also provides perspective for measuring pH 
which cannot be measured by glass electrode based pH sensors 
[27].    Mwema published a detailed review on application of 
Aluminium Nitride (AlN) thin �lms for harsh operating 
conditions, such as operating components under extreme shock 
loads, high temperature, corrosive environment and high 
pressure and forces. To measure above parameters di�erent 
MEMS are available such as acoustic sensors, transducers, 
resonators and energy harvesters. Ceramic materials AlN have 
been deposited on various metallic and nonmetallic substrates 
for various sensing applications using RF magnetron sputtering 
[28]. Research was also carried out by depositing titanium 
nitride (TiN) thin �lms onto Si and Si/SiO2 substrate by reactive 
pulsed DC magnetron sputtering for localized heating 
applications in MEMS devices [29]. Structural and optical 
properties were also improved by this process [30]. As 
nowadays we are using multi colored glasses, these can be 
obtained by multilayer coating of glasses. According to Yuan, it 
is possible to develop super hydrophobic �lm on glass which 
provides contact angle neary168.9°, which provides low surface 
energy, good stability under outdoor and ambient 
environments [31]. Zr-Cu-Ag thin �lm provides antibacterial 
coating for biomedical instruments which is amorphous, 
uniformly thick, and chemically homogeneous [32]. NiAl and 
NiAlN thin �lm was also obtained using closed �eld unbalanced 
magnetron sputtering which were deposited on glass and SS 
316L material which improves biological properties of material 
such as corrosion resistance, friction and hardness [33]. 
Properties of material can also be changed by this method such 
as orientation of Cr was changed from (110) to (200) by the 
power density which results in non-cracking behavior less than 
15N [34]. Recently target poisoning evolution is done by the 
magnetron sputtering process [35]. Rare earth material such as 
terbium is deposited on Si material which is investigated for 
optical properties and composition of terbium doped silicon 
oxide thin �lms [36]. 

 Biomedical implants made from Ti, SS 316L and CoCrMo 
alloys require hydroxyapatite coating to improve 
biocompatibility and osseointegration. RF magnetron 
sputtering provides uniform coating thickness between 0.2-1 
µm on �at surfaces result into better osseointegration with 
bones. It has also certain disadvantages like this is line of sight 
technique, time consuming, cannot coat complex substrates and 
produces amorphous coatings [37-39]. AISI 316L austenitic 

stainless steel is widely used for manufacturing of medical 
implants due to low cost, corrosion resistance and good fatigue 
strength [40]. However, these steels are prone to attack due to 
aggressive biological e�ects. To overcome this problem Ti 
coating is done on to the material in order to get good 
mechanical and corrosion resistance properties. �is process is 
also useful for material which require harder surface on outer 
side but so�er from inside. So, this can be achieved by 
depositing thin �lm of hard material such as titanium on the 
surface of the substrate. Presently there is eminent interest for 
the development of coating of transition metal nitride owing to 
its properties such as intrinsic biocompatibility, wear resistance 
and chemical stability. As the deposition of TiN coating requires 
low level of impurities and control of deposition rate, this can be 
achieved by magnetron sputtering by varying morphology and 
various crystallographic structure[41]. DLC (Diamond like 
carbon) coatings provides higher hardness, better wear 
resistance and low friction on Cr3C2-NiCr this can be achieved 
by Closed Field Unbalanced Magnetron Sputtering (CFUBMS). 
�e duplex coating using this technique maintains a stable 
coe�cient of friction and improves tribological performance 
[42]. Nowadays, conventional coating is replaced by use of 
composite coating, allowing combination of required 
properties. Lenis et al., deposited multilayer hydroxyapatite-Ag/ 
TiN-Ti coating on Ti6Al4V to make it usable for manufacturing 
of surgical instruments. Schematic architecture of developed 
multilayer coating is shown in �gure 7 [43]. Research on TiAlN 
(Ag,Cu) coating on AISI 420 steel was also carried out to make 
it suitable for applications in surgical and dental 
instrumentation by improving wear and corrosion resistance. 
According to Hernan et al., the lowest wear volume of 7.7 × 10-5 
mm3 was exhibited by coating AISI 420 steel with 17 at.% 
Ag-Cu [44,45].

paper through magnetron sputtering and used that to fabricate 
interlayers for lithium sulfur batteries to improve performance 
[46]. Recently, Shijian Yan suggested use of magnetron 
sputtering to fabricate cathode plates by reducing sulfur particle 
size for lithium sulfur batteries. �is approach simpli�ed the 
process and provided good results compared to traditional 
technologies as sulfur and carbon particles combined well 
without addition of binders. Schematic illustration to prepare 
cathode plate is given in (Figure 8) [47]. Sunlight is the most 
reliable and clean energy source available in the world which 
could be converted into useful energy. Solar cells are one of the 
devices which converts solar energy into electrical energy. Many 
researchers have experimented to improve the performance of 
solar cells by providing thin �lm of Mo, metal oxides such as 
TiO2, ZnO, Fe-Ga doped ZnO, reduce graphene oxide TiO2 
(rgo-TiO2) etc. In 1995, Sco�eld et al. suggested Mo as leading 
choice for the Copper Indium diselenide (CIS) and Copper 
Indium Gallium diselenide (CIGS) solar cells. Rashid et al. also 
deposited Mo on top of soda lime glass (SLG) using DC 
magnetron sputtering and proposed that 100W is optimized 
power to grow thin �lms on SLG as back contact material for 
fabrication of CIS and CIGS based solar cell devices [48]. Zheng 
et al. deposited Fe-Ga doped ZnO (FGZO) on glass substrates 
using RF magnetron sputtering to improve power conversion 
e�ciency of solar cells. According to him, FGZO thin �lm 
formed at substrate temperature of 440 °C resulted in the 
increase in power conversion e�ciency of 15.32% [49]. Another 
important device are the energy storage devices such as 
capacitors. Magnetron sputtering again �nds its application in 
this �eld also. Zhang et al. proposed a new method to prepare 
3D porous electrode materials based on graphene for 
application in supercapacitors. High conductivity and high 
contact interaction was observed between Co3O4 array and 
graphene a�er depositing by magnetron sputtering on Ni foam 
[50]. Mohd. Arif et al. also suggested thin �lm coating of TiN 
using DC magnetron sputtering on 304L steel substrate to make 
it suitable for super capacitor devices [51]. In addition to above 
all �elds, magnetron sputtering is also researched in the textile 
industries to develop antimicrobial textiles. Y.H. Chen et al. 
deposited antimicrobial brass coating on PET (Poly ethylene 
terephthalate) textile by HiPIMS [52]. 

Conclusions
Magnetron sputtering is a physical deposition technique which 
helps to deposit thin �lm of required materials such as metal, 
nonmetals, carbide, nitride, oxide and ceramic such as 
hydroxyapatite. From all di�erent magnetron sputtering 
con�gurations, HiPIMS and DOMS are widely used methods as 
it provides high density plasma and generates strongly adherent 
�lm at low substrate temperature. By controlling di�erent 
parameters a�ecting the sputtering process one can change 
morphology and properties of material which are bene�cial for 
mechanical, optical, electrical and biomedical applications. �e 
most important parameter is selection of power source which 
may be DC or RF depending on material. RF power source is 
useful when material to be deposited is insulating material. 
Discussion of most recent applications in the �eld of MEMS, 
lithium sulfur batteries, supercapacitors, biomedical implants 
and instruments, tribology and textile industries in the current 
study will help researchers to understand current research areas 
and to select future research directions as per their requirement. 
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Figure 4. Different Configuration of Unbalanced magnetron sputtering 
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Figure 6. Schematic of DOMS and dual DOMS modes with voltage 
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Sputtering is the process in which material is deposited on the 
substrate by vaporizing material from the target. It is the process 
in which momentum exchange takes place due to collisions 
between the energetic ions and atoms. In this, vacuum is 
required which extends formation time for oxides and reduces 
impurities contamination. For the purpose of thin �lm 
deposition, various sputtering techniques are available, among 
these dc diodes sputtering systems is the basic model. 
Remaining systems are improvements on the dc diode 
sputtering system. In the dc diode sputtering system one of the 
electrodes is an anode and the other is cathode covered with 
metal target material. If the target material is insulator, the dc 
power supply is replaced by a radio frequency (RF) power 
supply to sustain sputtering glow discharge [1]. Many materials 
have been deposited by the basic sputtering process, but it has 
limitations like low deposition rate, high substrate heating 
temperature and low ionization e�ciency in the plasma. �e 
term plasma is composed of particles such as electrons and 
ionized atoms, where a particle's electric charge becomes 
neutral. Based on temperature plasma can be divided in two 
types, one is low temperature plasma, generated at low pressure 
environment by the providing electric energy to a gas, and the 
other is high temperature plasma, which evolves in an 
environment greater than 10,000 °C. Plasma is important as it 
provides the environment for deposition and also used for 

etching, ion implantation and epitaxy [2]. During sputtering, to 
extend the lifespan of electrons escaping from cathode, Penning 
had suggested the use of magnetic �elds in the 1930s [3]. Later, 
advancement in this concept led to the method known as 
magnetron sputtering. Magnetron sputtering method is being 
developed rapidly in the last three decades where it has become 
an important technique for the deposition of thin �lm for 
various purposes.  In this method, an electromagnet and 
permanent magnet or combination of both can be used to create 
a magnetic �eld [4,5]. Limitation of the basic sputtering process 
is improved by the magnetron sputtering process and its 
di�erent con�gurations. 

 Plasma con�nement is the main factor that makes a 
di�erence among all the processes. In conventional magnetrons, 
the magnetic core is the end point for magnetic �ux generated 
from a cathode which is called a balanced magnetron as shown 
in �gure 1(a). Whereas, unbalanced magnetrons have di�erent 
degrees of plasma con�nement in which an additional magnetic 
�eld is applied to the balanced magnetron as shown in �gure 
1(b) [1]. In a balanced magnetron, the target region is the place 
where plasma is con�ned, which extends dense plasma about 60 
mm in front of the target. In this process substrate inside this 
region gets deposited which results in modi�cation of 
properties and microstructure of thin �lm, whereas substrate 
outside this region lacks su�cient ion bombardment to alter the 

properties and microstructure of thin �lm. An unbalanced 
magnetron is the solution for this problem. �e second 
limitation of sputtering technique is the inability to deposit 
dense and defect free coating such as oxides and medical 
implant coating. �is advantage is obtained by the method 
known as pulsed closed �eld magnetron sputtering technique 
[6]. So now, in the next topic we will continue our discussion 
regarding recent con�gurations of magnetron sputtering and 
their advantages.

10-6 to 10-8 of an atmospheres, controlled �ow of gas like argon 
(inert gas) and oxygen (reactive gas) which raises the pressure to 
the prerequisite level, the power in the form of DC or RF (13.56 
MHz) which provides voltage about 300V to operate the 
magnetrons. It uses magnets behind the negatively charged 
target material to control ion bombardment which results in 
faster deposition rates[7,8].

complex shapes [12]. In multiple magnetron systems di�erent 
polarities are set to obtain di�erent con�gurations such as 
“mirrored” and “closed �eld”. Both the con�gurations are shown 
in (Figure 4). As shown in mirror-�eld con�guration, �eld lines 
are moving towards the chamber wall and result in loss of 
plasma. However closed �eld con�guration �eld lines are 
moving towards target materials or magnetrons which will 
result in dense plasma generation and losses to the chamber are 
less. �e e�ectiveness of closed �eld (CFUBMS) con�guration 
compared to Unbalanced (UBMS) and Mirror �eld (MFUBMS) 
is shown in (Figure 5) [13,14]. For large cylindrical targets, 
rotating magnetrons are used for coating. In this con�guration,  
the rotating tube is a cathode target and  inside the cylinder 
magnetic assembly is available[15]. 
        

 To overcome problems faced during deposition of 
insulating �lm using reactive sputtering, pulsed magnetron 
sputtering is used. A pulsed magnetron system has di�erent 
con�gurations such as a symmetric bi-polar pulsed, unipolar 
pulsed and high-power impulse magnetron system. High power 
impulse magnetron sputtering (HiPIMS) prevents arcing, 
provides more stable discharge ignition and also reduces the 
working gas pressure in vacuum chamber [16]. Detailed 
comparison between cathodic arc and HiPIMS technique was 
given by Andre Anders in his published work [17]. In the pulsed 
closed �eld unbalanced magnetron sputtering (P-CFUBMS) 
method, electrons are con�ned in the plasma by magnetic �eld 
lines between magnetrons and increase ion density which leads 
to high level of ion bombardment. �is process can also be used 
to deposit alloy nitrides, oxides and carbides with the required 
composition and multilayer deposition by controlling the 
power density on multiple targets and partial pressure of 
reactive gas. However, a limited amount of research has been 
conducted on P-CFUBMS in reactive sputtering [18,19]. 
According to Avino et al., densi�cation in the coating of objects 
can be improved using HiPIMS compared to direct current 
magnetron sputtering [20]. Recently, a new method is 
developed named the dual mode of deep oscillation magnetron 
sputtering (DOMS). �e dual mode magnetron sputtering 
system solves the problem of disappearing anode, which arises 
in reactive sputtering of dielectric coating. A bipolar power 
source can be implemented in Dual DOMS to avoid long 
intervals between micropulses. V.O. Oskirko et al. provided 
schematic of DOMS and dual DOMS modes with voltage 
impulse curves as shown in (Figure 6) [21].

 If we summarize, it can be written as dual target mode of 
deep oscillation magnetron sputtering provides advantages over 
high power impulse magnetron sputtering and high-power 
impulse magnetron sputtering provides advantages over direct 
current magnetron sputtering. 

Parameters Affecting Magnetron Sputtering
Main parameters a�ecting the sputtering process are: 
Sputtering power, vacuum, sputtering gas, pressure inside 
chamber, distance between substrate and target material, 
temperature of substrate, target composition and magnets 
con�guration [22,23]. According to P. Chelvanathan and his 
colleagues, during deposition of Mo thin �lm, growth rate was 
higher for higher RF Power and operating pressure. Higher 
kinetic energy of incident Mo atoms during deposition 
improves the crystallinity property [24].  M. Zhijun et al. has 
considered di�erent sputtering parameters such as power, 
pressure, time, thickness and deposition rate. From his results it 
was observed that keeping power and deposition time constant, 
pressure and thickness obtained a�er deposition decreases. 
While keeping pressure and deposition constant, as power 
decreases there is slight increment and decrement in the 
thickness achieved by this process [25]. Energy is the main 
factor responsible for  mechanical and physical properties of 
sputter �lms including their behavior to resist the crack and to 
enable their useful production [26]. Let us limit the discussion 
regarding the e�ect of process parameters on �lm deposition as 
it is a very wide area which depends on application of 
magnetron sputtering.

Recent Development and Applications
Most recent applications of magnetron sputtering are in the 
�eld of Micro electro mechanical systems (MEMS), lithium 
sulfur batteries, super capacitors, tribology, solar cell, textile 
industries, biomedical implants and instruments. Most of the 
processes related with water need to have proper pH 
monitoring. Most of the chemical materials including blood in 
our body requires pH controlling in the range of 7.35 to 7.45. 
Exceeding pH, results in serious problems. Typically, Metal 
oxide-based pH sensors have found their applications in 
chemical and biological �elds. �ey consist of attractive features 
such as insolubility, better sensing range, stability and 
mechanical strength. Metal oxides deposited by RF magnetron 
sputtering provides better PH sensitivity, fast response, good 
resolution and it also provides perspective for measuring pH 
which cannot be measured by glass electrode based pH sensors 
[27].    Mwema published a detailed review on application of 
Aluminium Nitride (AlN) thin �lms for harsh operating 
conditions, such as operating components under extreme shock 
loads, high temperature, corrosive environment and high 
pressure and forces. To measure above parameters di�erent 
MEMS are available such as acoustic sensors, transducers, 
resonators and energy harvesters. Ceramic materials AlN have 
been deposited on various metallic and nonmetallic substrates 
for various sensing applications using RF magnetron sputtering 
[28]. Research was also carried out by depositing titanium 
nitride (TiN) thin �lms onto Si and Si/SiO2 substrate by reactive 
pulsed DC magnetron sputtering for localized heating 
applications in MEMS devices [29]. Structural and optical 
properties were also improved by this process [30]. As 
nowadays we are using multi colored glasses, these can be 
obtained by multilayer coating of glasses. According to Yuan, it 
is possible to develop super hydrophobic �lm on glass which 
provides contact angle neary168.9°, which provides low surface 
energy, good stability under outdoor and ambient 
environments [31]. Zr-Cu-Ag thin �lm provides antibacterial 
coating for biomedical instruments which is amorphous, 
uniformly thick, and chemically homogeneous [32]. NiAl and 
NiAlN thin �lm was also obtained using closed �eld unbalanced 
magnetron sputtering which were deposited on glass and SS 
316L material which improves biological properties of material 
such as corrosion resistance, friction and hardness [33]. 
Properties of material can also be changed by this method such 
as orientation of Cr was changed from (110) to (200) by the 
power density which results in non-cracking behavior less than 
15N [34]. Recently target poisoning evolution is done by the 
magnetron sputtering process [35]. Rare earth material such as 
terbium is deposited on Si material which is investigated for 
optical properties and composition of terbium doped silicon 
oxide thin �lms [36]. 

 Biomedical implants made from Ti, SS 316L and CoCrMo 
alloys require hydroxyapatite coating to improve 
biocompatibility and osseointegration. RF magnetron 
sputtering provides uniform coating thickness between 0.2-1 
µm on �at surfaces result into better osseointegration with 
bones. It has also certain disadvantages like this is line of sight 
technique, time consuming, cannot coat complex substrates and 
produces amorphous coatings [37-39]. AISI 316L austenitic 

stainless steel is widely used for manufacturing of medical 
implants due to low cost, corrosion resistance and good fatigue 
strength [40]. However, these steels are prone to attack due to 
aggressive biological e�ects. To overcome this problem Ti 
coating is done on to the material in order to get good 
mechanical and corrosion resistance properties. �is process is 
also useful for material which require harder surface on outer 
side but so�er from inside. So, this can be achieved by 
depositing thin �lm of hard material such as titanium on the 
surface of the substrate. Presently there is eminent interest for 
the development of coating of transition metal nitride owing to 
its properties such as intrinsic biocompatibility, wear resistance 
and chemical stability. As the deposition of TiN coating requires 
low level of impurities and control of deposition rate, this can be 
achieved by magnetron sputtering by varying morphology and 
various crystallographic structure[41]. DLC (Diamond like 
carbon) coatings provides higher hardness, better wear 
resistance and low friction on Cr3C2-NiCr this can be achieved 
by Closed Field Unbalanced Magnetron Sputtering (CFUBMS). 
�e duplex coating using this technique maintains a stable 
coe�cient of friction and improves tribological performance 
[42]. Nowadays, conventional coating is replaced by use of 
composite coating, allowing combination of required 
properties. Lenis et al., deposited multilayer hydroxyapatite-Ag/ 
TiN-Ti coating on Ti6Al4V to make it usable for manufacturing 
of surgical instruments. Schematic architecture of developed 
multilayer coating is shown in �gure 7 [43]. Research on TiAlN 
(Ag,Cu) coating on AISI 420 steel was also carried out to make 
it suitable for applications in surgical and dental 
instrumentation by improving wear and corrosion resistance. 
According to Hernan et al., the lowest wear volume of 7.7 × 10-5 
mm3 was exhibited by coating AISI 420 steel with 17 at.% 
Ag-Cu [44,45].

paper through magnetron sputtering and used that to fabricate 
interlayers for lithium sulfur batteries to improve performance 
[46]. Recently, Shijian Yan suggested use of magnetron 
sputtering to fabricate cathode plates by reducing sulfur particle 
size for lithium sulfur batteries. �is approach simpli�ed the 
process and provided good results compared to traditional 
technologies as sulfur and carbon particles combined well 
without addition of binders. Schematic illustration to prepare 
cathode plate is given in (Figure 8) [47]. Sunlight is the most 
reliable and clean energy source available in the world which 
could be converted into useful energy. Solar cells are one of the 
devices which converts solar energy into electrical energy. Many 
researchers have experimented to improve the performance of 
solar cells by providing thin �lm of Mo, metal oxides such as 
TiO2, ZnO, Fe-Ga doped ZnO, reduce graphene oxide TiO2 
(rgo-TiO2) etc. In 1995, Sco�eld et al. suggested Mo as leading 
choice for the Copper Indium diselenide (CIS) and Copper 
Indium Gallium diselenide (CIGS) solar cells. Rashid et al. also 
deposited Mo on top of soda lime glass (SLG) using DC 
magnetron sputtering and proposed that 100W is optimized 
power to grow thin �lms on SLG as back contact material for 
fabrication of CIS and CIGS based solar cell devices [48]. Zheng 
et al. deposited Fe-Ga doped ZnO (FGZO) on glass substrates 
using RF magnetron sputtering to improve power conversion 
e�ciency of solar cells. According to him, FGZO thin �lm 
formed at substrate temperature of 440 °C resulted in the 
increase in power conversion e�ciency of 15.32% [49]. Another 
important device are the energy storage devices such as 
capacitors. Magnetron sputtering again �nds its application in 
this �eld also. Zhang et al. proposed a new method to prepare 
3D porous electrode materials based on graphene for 
application in supercapacitors. High conductivity and high 
contact interaction was observed between Co3O4 array and 
graphene a�er depositing by magnetron sputtering on Ni foam 
[50]. Mohd. Arif et al. also suggested thin �lm coating of TiN 
using DC magnetron sputtering on 304L steel substrate to make 
it suitable for super capacitor devices [51]. In addition to above 
all �elds, magnetron sputtering is also researched in the textile 
industries to develop antimicrobial textiles. Y.H. Chen et al. 
deposited antimicrobial brass coating on PET (Poly ethylene 
terephthalate) textile by HiPIMS [52]. 

Conclusions
Magnetron sputtering is a physical deposition technique which 
helps to deposit thin �lm of required materials such as metal, 
nonmetals, carbide, nitride, oxide and ceramic such as 
hydroxyapatite. From all di�erent magnetron sputtering 
con�gurations, HiPIMS and DOMS are widely used methods as 
it provides high density plasma and generates strongly adherent 
�lm at low substrate temperature. By controlling di�erent 
parameters a�ecting the sputtering process one can change 
morphology and properties of material which are bene�cial for 
mechanical, optical, electrical and biomedical applications. �e 
most important parameter is selection of power source which 
may be DC or RF depending on material. RF power source is 
useful when material to be deposited is insulating material. 
Discussion of most recent applications in the �eld of MEMS, 
lithium sulfur batteries, supercapacitors, biomedical implants 
and instruments, tribology and textile industries in the current 
study will help researchers to understand current research areas 
and to select future research directions as per their requirement. 
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Figure 7. Schematic of multilayer coating [43].
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Sputtering is the process in which material is deposited on the 
substrate by vaporizing material from the target. It is the process 
in which momentum exchange takes place due to collisions 
between the energetic ions and atoms. In this, vacuum is 
required which extends formation time for oxides and reduces 
impurities contamination. For the purpose of thin �lm 
deposition, various sputtering techniques are available, among 
these dc diodes sputtering systems is the basic model. 
Remaining systems are improvements on the dc diode 
sputtering system. In the dc diode sputtering system one of the 
electrodes is an anode and the other is cathode covered with 
metal target material. If the target material is insulator, the dc 
power supply is replaced by a radio frequency (RF) power 
supply to sustain sputtering glow discharge [1]. Many materials 
have been deposited by the basic sputtering process, but it has 
limitations like low deposition rate, high substrate heating 
temperature and low ionization e�ciency in the plasma. �e 
term plasma is composed of particles such as electrons and 
ionized atoms, where a particle's electric charge becomes 
neutral. Based on temperature plasma can be divided in two 
types, one is low temperature plasma, generated at low pressure 
environment by the providing electric energy to a gas, and the 
other is high temperature plasma, which evolves in an 
environment greater than 10,000 °C. Plasma is important as it 
provides the environment for deposition and also used for 

etching, ion implantation and epitaxy [2]. During sputtering, to 
extend the lifespan of electrons escaping from cathode, Penning 
had suggested the use of magnetic �elds in the 1930s [3]. Later, 
advancement in this concept led to the method known as 
magnetron sputtering. Magnetron sputtering method is being 
developed rapidly in the last three decades where it has become 
an important technique for the deposition of thin �lm for 
various purposes.  In this method, an electromagnet and 
permanent magnet or combination of both can be used to create 
a magnetic �eld [4,5]. Limitation of the basic sputtering process 
is improved by the magnetron sputtering process and its 
di�erent con�gurations. 

 Plasma con�nement is the main factor that makes a 
di�erence among all the processes. In conventional magnetrons, 
the magnetic core is the end point for magnetic �ux generated 
from a cathode which is called a balanced magnetron as shown 
in �gure 1(a). Whereas, unbalanced magnetrons have di�erent 
degrees of plasma con�nement in which an additional magnetic 
�eld is applied to the balanced magnetron as shown in �gure 
1(b) [1]. In a balanced magnetron, the target region is the place 
where plasma is con�ned, which extends dense plasma about 60 
mm in front of the target. In this process substrate inside this 
region gets deposited which results in modi�cation of 
properties and microstructure of thin �lm, whereas substrate 
outside this region lacks su�cient ion bombardment to alter the 

properties and microstructure of thin �lm. An unbalanced 
magnetron is the solution for this problem. �e second 
limitation of sputtering technique is the inability to deposit 
dense and defect free coating such as oxides and medical 
implant coating. �is advantage is obtained by the method 
known as pulsed closed �eld magnetron sputtering technique 
[6]. So now, in the next topic we will continue our discussion 
regarding recent con�gurations of magnetron sputtering and 
their advantages.

10-6 to 10-8 of an atmospheres, controlled �ow of gas like argon 
(inert gas) and oxygen (reactive gas) which raises the pressure to 
the prerequisite level, the power in the form of DC or RF (13.56 
MHz) which provides voltage about 300V to operate the 
magnetrons. It uses magnets behind the negatively charged 
target material to control ion bombardment which results in 
faster deposition rates[7,8].

complex shapes [12]. In multiple magnetron systems di�erent 
polarities are set to obtain di�erent con�gurations such as 
“mirrored” and “closed �eld”. Both the con�gurations are shown 
in (Figure 4). As shown in mirror-�eld con�guration, �eld lines 
are moving towards the chamber wall and result in loss of 
plasma. However closed �eld con�guration �eld lines are 
moving towards target materials or magnetrons which will 
result in dense plasma generation and losses to the chamber are 
less. �e e�ectiveness of closed �eld (CFUBMS) con�guration 
compared to Unbalanced (UBMS) and Mirror �eld (MFUBMS) 
is shown in (Figure 5) [13,14]. For large cylindrical targets, 
rotating magnetrons are used for coating. In this con�guration,  
the rotating tube is a cathode target and  inside the cylinder 
magnetic assembly is available[15]. 
        

 To overcome problems faced during deposition of 
insulating �lm using reactive sputtering, pulsed magnetron 
sputtering is used. A pulsed magnetron system has di�erent 
con�gurations such as a symmetric bi-polar pulsed, unipolar 
pulsed and high-power impulse magnetron system. High power 
impulse magnetron sputtering (HiPIMS) prevents arcing, 
provides more stable discharge ignition and also reduces the 
working gas pressure in vacuum chamber [16]. Detailed 
comparison between cathodic arc and HiPIMS technique was 
given by Andre Anders in his published work [17]. In the pulsed 
closed �eld unbalanced magnetron sputtering (P-CFUBMS) 
method, electrons are con�ned in the plasma by magnetic �eld 
lines between magnetrons and increase ion density which leads 
to high level of ion bombardment. �is process can also be used 
to deposit alloy nitrides, oxides and carbides with the required 
composition and multilayer deposition by controlling the 
power density on multiple targets and partial pressure of 
reactive gas. However, a limited amount of research has been 
conducted on P-CFUBMS in reactive sputtering [18,19]. 
According to Avino et al., densi�cation in the coating of objects 
can be improved using HiPIMS compared to direct current 
magnetron sputtering [20]. Recently, a new method is 
developed named the dual mode of deep oscillation magnetron 
sputtering (DOMS). �e dual mode magnetron sputtering 
system solves the problem of disappearing anode, which arises 
in reactive sputtering of dielectric coating. A bipolar power 
source can be implemented in Dual DOMS to avoid long 
intervals between micropulses. V.O. Oskirko et al. provided 
schematic of DOMS and dual DOMS modes with voltage 
impulse curves as shown in (Figure 6) [21].

 If we summarize, it can be written as dual target mode of 
deep oscillation magnetron sputtering provides advantages over 
high power impulse magnetron sputtering and high-power 
impulse magnetron sputtering provides advantages over direct 
current magnetron sputtering. 

Parameters Affecting Magnetron Sputtering
Main parameters a�ecting the sputtering process are: 
Sputtering power, vacuum, sputtering gas, pressure inside 
chamber, distance between substrate and target material, 
temperature of substrate, target composition and magnets 
con�guration [22,23]. According to P. Chelvanathan and his 
colleagues, during deposition of Mo thin �lm, growth rate was 
higher for higher RF Power and operating pressure. Higher 
kinetic energy of incident Mo atoms during deposition 
improves the crystallinity property [24].  M. Zhijun et al. has 
considered di�erent sputtering parameters such as power, 
pressure, time, thickness and deposition rate. From his results it 
was observed that keeping power and deposition time constant, 
pressure and thickness obtained a�er deposition decreases. 
While keeping pressure and deposition constant, as power 
decreases there is slight increment and decrement in the 
thickness achieved by this process [25]. Energy is the main 
factor responsible for  mechanical and physical properties of 
sputter �lms including their behavior to resist the crack and to 
enable their useful production [26]. Let us limit the discussion 
regarding the e�ect of process parameters on �lm deposition as 
it is a very wide area which depends on application of 
magnetron sputtering.

Recent Development and Applications
Most recent applications of magnetron sputtering are in the 
�eld of Micro electro mechanical systems (MEMS), lithium 
sulfur batteries, super capacitors, tribology, solar cell, textile 
industries, biomedical implants and instruments. Most of the 
processes related with water need to have proper pH 
monitoring. Most of the chemical materials including blood in 
our body requires pH controlling in the range of 7.35 to 7.45. 
Exceeding pH, results in serious problems. Typically, Metal 
oxide-based pH sensors have found their applications in 
chemical and biological �elds. �ey consist of attractive features 
such as insolubility, better sensing range, stability and 
mechanical strength. Metal oxides deposited by RF magnetron 
sputtering provides better PH sensitivity, fast response, good 
resolution and it also provides perspective for measuring pH 
which cannot be measured by glass electrode based pH sensors 
[27].    Mwema published a detailed review on application of 
Aluminium Nitride (AlN) thin �lms for harsh operating 
conditions, such as operating components under extreme shock 
loads, high temperature, corrosive environment and high 
pressure and forces. To measure above parameters di�erent 
MEMS are available such as acoustic sensors, transducers, 
resonators and energy harvesters. Ceramic materials AlN have 
been deposited on various metallic and nonmetallic substrates 
for various sensing applications using RF magnetron sputtering 
[28]. Research was also carried out by depositing titanium 
nitride (TiN) thin �lms onto Si and Si/SiO2 substrate by reactive 
pulsed DC magnetron sputtering for localized heating 
applications in MEMS devices [29]. Structural and optical 
properties were also improved by this process [30]. As 
nowadays we are using multi colored glasses, these can be 
obtained by multilayer coating of glasses. According to Yuan, it 
is possible to develop super hydrophobic �lm on glass which 
provides contact angle neary168.9°, which provides low surface 
energy, good stability under outdoor and ambient 
environments [31]. Zr-Cu-Ag thin �lm provides antibacterial 
coating for biomedical instruments which is amorphous, 
uniformly thick, and chemically homogeneous [32]. NiAl and 
NiAlN thin �lm was also obtained using closed �eld unbalanced 
magnetron sputtering which were deposited on glass and SS 
316L material which improves biological properties of material 
such as corrosion resistance, friction and hardness [33]. 
Properties of material can also be changed by this method such 
as orientation of Cr was changed from (110) to (200) by the 
power density which results in non-cracking behavior less than 
15N [34]. Recently target poisoning evolution is done by the 
magnetron sputtering process [35]. Rare earth material such as 
terbium is deposited on Si material which is investigated for 
optical properties and composition of terbium doped silicon 
oxide thin �lms [36]. 

 Biomedical implants made from Ti, SS 316L and CoCrMo 
alloys require hydroxyapatite coating to improve 
biocompatibility and osseointegration. RF magnetron 
sputtering provides uniform coating thickness between 0.2-1 
µm on �at surfaces result into better osseointegration with 
bones. It has also certain disadvantages like this is line of sight 
technique, time consuming, cannot coat complex substrates and 
produces amorphous coatings [37-39]. AISI 316L austenitic 

stainless steel is widely used for manufacturing of medical 
implants due to low cost, corrosion resistance and good fatigue 
strength [40]. However, these steels are prone to attack due to 
aggressive biological e�ects. To overcome this problem Ti 
coating is done on to the material in order to get good 
mechanical and corrosion resistance properties. �is process is 
also useful for material which require harder surface on outer 
side but so�er from inside. So, this can be achieved by 
depositing thin �lm of hard material such as titanium on the 
surface of the substrate. Presently there is eminent interest for 
the development of coating of transition metal nitride owing to 
its properties such as intrinsic biocompatibility, wear resistance 
and chemical stability. As the deposition of TiN coating requires 
low level of impurities and control of deposition rate, this can be 
achieved by magnetron sputtering by varying morphology and 
various crystallographic structure[41]. DLC (Diamond like 
carbon) coatings provides higher hardness, better wear 
resistance and low friction on Cr3C2-NiCr this can be achieved 
by Closed Field Unbalanced Magnetron Sputtering (CFUBMS). 
�e duplex coating using this technique maintains a stable 
coe�cient of friction and improves tribological performance 
[42]. Nowadays, conventional coating is replaced by use of 
composite coating, allowing combination of required 
properties. Lenis et al., deposited multilayer hydroxyapatite-Ag/ 
TiN-Ti coating on Ti6Al4V to make it usable for manufacturing 
of surgical instruments. Schematic architecture of developed 
multilayer coating is shown in �gure 7 [43]. Research on TiAlN 
(Ag,Cu) coating on AISI 420 steel was also carried out to make 
it suitable for applications in surgical and dental 
instrumentation by improving wear and corrosion resistance. 
According to Hernan et al., the lowest wear volume of 7.7 × 10-5 
mm3 was exhibited by coating AISI 420 steel with 17 at.% 
Ag-Cu [44,45].

paper through magnetron sputtering and used that to fabricate 
interlayers for lithium sulfur batteries to improve performance 
[46]. Recently, Shijian Yan suggested use of magnetron 
sputtering to fabricate cathode plates by reducing sulfur particle 
size for lithium sulfur batteries. �is approach simpli�ed the 
process and provided good results compared to traditional 
technologies as sulfur and carbon particles combined well 
without addition of binders. Schematic illustration to prepare 
cathode plate is given in (Figure 8) [47]. Sunlight is the most 
reliable and clean energy source available in the world which 
could be converted into useful energy. Solar cells are one of the 
devices which converts solar energy into electrical energy. Many 
researchers have experimented to improve the performance of 
solar cells by providing thin �lm of Mo, metal oxides such as 
TiO2, ZnO, Fe-Ga doped ZnO, reduce graphene oxide TiO2 
(rgo-TiO2) etc. In 1995, Sco�eld et al. suggested Mo as leading 
choice for the Copper Indium diselenide (CIS) and Copper 
Indium Gallium diselenide (CIGS) solar cells. Rashid et al. also 
deposited Mo on top of soda lime glass (SLG) using DC 
magnetron sputtering and proposed that 100W is optimized 
power to grow thin �lms on SLG as back contact material for 
fabrication of CIS and CIGS based solar cell devices [48]. Zheng 
et al. deposited Fe-Ga doped ZnO (FGZO) on glass substrates 
using RF magnetron sputtering to improve power conversion 
e�ciency of solar cells. According to him, FGZO thin �lm 
formed at substrate temperature of 440 °C resulted in the 
increase in power conversion e�ciency of 15.32% [49]. Another 
important device are the energy storage devices such as 
capacitors. Magnetron sputtering again �nds its application in 
this �eld also. Zhang et al. proposed a new method to prepare 
3D porous electrode materials based on graphene for 
application in supercapacitors. High conductivity and high 
contact interaction was observed between Co3O4 array and 
graphene a�er depositing by magnetron sputtering on Ni foam 
[50]. Mohd. Arif et al. also suggested thin �lm coating of TiN 
using DC magnetron sputtering on 304L steel substrate to make 
it suitable for super capacitor devices [51]. In addition to above 
all �elds, magnetron sputtering is also researched in the textile 
industries to develop antimicrobial textiles. Y.H. Chen et al. 
deposited antimicrobial brass coating on PET (Poly ethylene 
terephthalate) textile by HiPIMS [52]. 

Conclusions
Magnetron sputtering is a physical deposition technique which 
helps to deposit thin �lm of required materials such as metal, 
nonmetals, carbide, nitride, oxide and ceramic such as 
hydroxyapatite. From all di�erent magnetron sputtering 
con�gurations, HiPIMS and DOMS are widely used methods as 
it provides high density plasma and generates strongly adherent 
�lm at low substrate temperature. By controlling di�erent 
parameters a�ecting the sputtering process one can change 
morphology and properties of material which are bene�cial for 
mechanical, optical, electrical and biomedical applications. �e 
most important parameter is selection of power source which 
may be DC or RF depending on material. RF power source is 
useful when material to be deposited is insulating material. 
Discussion of most recent applications in the �eld of MEMS, 
lithium sulfur batteries, supercapacitors, biomedical implants 
and instruments, tribology and textile industries in the current 
study will help researchers to understand current research areas 
and to select future research directions as per their requirement. 
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Different Magnetron Sputtering Processes and Their 
Advantages
Initially, magnetron is applied for coating of metal and its alloys 
but now with the development, this technique can be used for 
�ber, ceramic and also for functionally graded material to 
enhance its microstructural, mechanical, optical, electrical and 
biomedical properties. �e basic principle used by magnetrons 
is that secondary electrons are constrained towards the target by 
means of a parallel magnetic �eld. Which will result in dense 
plasma generation and more ion bombardment on the substrate 
enabling higher sputtering rate and thus high deposition rate at 
the substrate surface. �e con�guration of magnetrons with a 
�at, cone, and cylindrical target were designed for extended 
magnetron sputtering systems (MSS). It has di�erent names 
based on di�erent power sources used such as DC, Radio 
frequency (RF), Pulsed magnetron sputtering. Schematic 
diagram for magnetron sputtering is shown in (Figure 2). Basic 
requirements for magnetrons are high vacuum in the range of 

 In an unbalanced magnetron sputtering arrangement of the 
outer ring of magnet is such that it provides strength relative to 
the central pole. Here, all the �eld lines are directed towards the 
central and outer poles in magnetron as well as directed towards 
substrate. So, plasma is not restricted only near to the target 
region but it also expands outwards of the substrate, which will 
cover the entire substrate material that gives accurate and 
uniform thin �lm over the substrate material increasing its 
mechanical and other required properties. Additionally, the 
target current is directly proportional to the ion current drawn 
at the substrate. Di�erent magnetron modes are shown in 
(Figure 3), which have di�erent plasma con�nement regions. 
Above discussed design is termed as Type-2 by Savvides and 
Window. However, lines are concentrating towards chamber 
walls and result in lower plasma generation. �is type is not 
used due to lower ion bombardment but some researchers have 
used this technique for the development of the novel structure 
zone model [9,10]. 

 Unbalanced magnetron sputtering has greater advantages 
over conventional magnetron sputtering but has certain 
limitations such as it is di�cult to uniformly coat complex 
shapes using a single source. So to overcome this problem, use 
of multiple sources were suggested at di�erent angles to coat 
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Figure 8. Schematic illustration to prepare cathode plate using proposed 
magnetron sputtering [47].
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Sputtering is the process in which material is deposited on the 
substrate by vaporizing material from the target. It is the process 
in which momentum exchange takes place due to collisions 
between the energetic ions and atoms. In this, vacuum is 
required which extends formation time for oxides and reduces 
impurities contamination. For the purpose of thin �lm 
deposition, various sputtering techniques are available, among 
these dc diodes sputtering systems is the basic model. 
Remaining systems are improvements on the dc diode 
sputtering system. In the dc diode sputtering system one of the 
electrodes is an anode and the other is cathode covered with 
metal target material. If the target material is insulator, the dc 
power supply is replaced by a radio frequency (RF) power 
supply to sustain sputtering glow discharge [1]. Many materials 
have been deposited by the basic sputtering process, but it has 
limitations like low deposition rate, high substrate heating 
temperature and low ionization e�ciency in the plasma. �e 
term plasma is composed of particles such as electrons and 
ionized atoms, where a particle's electric charge becomes 
neutral. Based on temperature plasma can be divided in two 
types, one is low temperature plasma, generated at low pressure 
environment by the providing electric energy to a gas, and the 
other is high temperature plasma, which evolves in an 
environment greater than 10,000 °C. Plasma is important as it 
provides the environment for deposition and also used for 

etching, ion implantation and epitaxy [2]. During sputtering, to 
extend the lifespan of electrons escaping from cathode, Penning 
had suggested the use of magnetic �elds in the 1930s [3]. Later, 
advancement in this concept led to the method known as 
magnetron sputtering. Magnetron sputtering method is being 
developed rapidly in the last three decades where it has become 
an important technique for the deposition of thin �lm for 
various purposes.  In this method, an electromagnet and 
permanent magnet or combination of both can be used to create 
a magnetic �eld [4,5]. Limitation of the basic sputtering process 
is improved by the magnetron sputtering process and its 
di�erent con�gurations. 

 Plasma con�nement is the main factor that makes a 
di�erence among all the processes. In conventional magnetrons, 
the magnetic core is the end point for magnetic �ux generated 
from a cathode which is called a balanced magnetron as shown 
in �gure 1(a). Whereas, unbalanced magnetrons have di�erent 
degrees of plasma con�nement in which an additional magnetic 
�eld is applied to the balanced magnetron as shown in �gure 
1(b) [1]. In a balanced magnetron, the target region is the place 
where plasma is con�ned, which extends dense plasma about 60 
mm in front of the target. In this process substrate inside this 
region gets deposited which results in modi�cation of 
properties and microstructure of thin �lm, whereas substrate 
outside this region lacks su�cient ion bombardment to alter the 

properties and microstructure of thin �lm. An unbalanced 
magnetron is the solution for this problem. �e second 
limitation of sputtering technique is the inability to deposit 
dense and defect free coating such as oxides and medical 
implant coating. �is advantage is obtained by the method 
known as pulsed closed �eld magnetron sputtering technique 
[6]. So now, in the next topic we will continue our discussion 
regarding recent con�gurations of magnetron sputtering and 
their advantages.

10-6 to 10-8 of an atmospheres, controlled �ow of gas like argon 
(inert gas) and oxygen (reactive gas) which raises the pressure to 
the prerequisite level, the power in the form of DC or RF (13.56 
MHz) which provides voltage about 300V to operate the 
magnetrons. It uses magnets behind the negatively charged 
target material to control ion bombardment which results in 
faster deposition rates[7,8].

complex shapes [12]. In multiple magnetron systems di�erent 
polarities are set to obtain di�erent con�gurations such as 
“mirrored” and “closed �eld”. Both the con�gurations are shown 
in (Figure 4). As shown in mirror-�eld con�guration, �eld lines 
are moving towards the chamber wall and result in loss of 
plasma. However closed �eld con�guration �eld lines are 
moving towards target materials or magnetrons which will 
result in dense plasma generation and losses to the chamber are 
less. �e e�ectiveness of closed �eld (CFUBMS) con�guration 
compared to Unbalanced (UBMS) and Mirror �eld (MFUBMS) 
is shown in (Figure 5) [13,14]. For large cylindrical targets, 
rotating magnetrons are used for coating. In this con�guration,  
the rotating tube is a cathode target and  inside the cylinder 
magnetic assembly is available[15]. 
        

 To overcome problems faced during deposition of 
insulating �lm using reactive sputtering, pulsed magnetron 
sputtering is used. A pulsed magnetron system has di�erent 
con�gurations such as a symmetric bi-polar pulsed, unipolar 
pulsed and high-power impulse magnetron system. High power 
impulse magnetron sputtering (HiPIMS) prevents arcing, 
provides more stable discharge ignition and also reduces the 
working gas pressure in vacuum chamber [16]. Detailed 
comparison between cathodic arc and HiPIMS technique was 
given by Andre Anders in his published work [17]. In the pulsed 
closed �eld unbalanced magnetron sputtering (P-CFUBMS) 
method, electrons are con�ned in the plasma by magnetic �eld 
lines between magnetrons and increase ion density which leads 
to high level of ion bombardment. �is process can also be used 
to deposit alloy nitrides, oxides and carbides with the required 
composition and multilayer deposition by controlling the 
power density on multiple targets and partial pressure of 
reactive gas. However, a limited amount of research has been 
conducted on P-CFUBMS in reactive sputtering [18,19]. 
According to Avino et al., densi�cation in the coating of objects 
can be improved using HiPIMS compared to direct current 
magnetron sputtering [20]. Recently, a new method is 
developed named the dual mode of deep oscillation magnetron 
sputtering (DOMS). �e dual mode magnetron sputtering 
system solves the problem of disappearing anode, which arises 
in reactive sputtering of dielectric coating. A bipolar power 
source can be implemented in Dual DOMS to avoid long 
intervals between micropulses. V.O. Oskirko et al. provided 
schematic of DOMS and dual DOMS modes with voltage 
impulse curves as shown in (Figure 6) [21].

 If we summarize, it can be written as dual target mode of 
deep oscillation magnetron sputtering provides advantages over 
high power impulse magnetron sputtering and high-power 
impulse magnetron sputtering provides advantages over direct 
current magnetron sputtering. 

Parameters Affecting Magnetron Sputtering
Main parameters a�ecting the sputtering process are: 
Sputtering power, vacuum, sputtering gas, pressure inside 
chamber, distance between substrate and target material, 
temperature of substrate, target composition and magnets 
con�guration [22,23]. According to P. Chelvanathan and his 
colleagues, during deposition of Mo thin �lm, growth rate was 
higher for higher RF Power and operating pressure. Higher 
kinetic energy of incident Mo atoms during deposition 
improves the crystallinity property [24].  M. Zhijun et al. has 
considered di�erent sputtering parameters such as power, 
pressure, time, thickness and deposition rate. From his results it 
was observed that keeping power and deposition time constant, 
pressure and thickness obtained a�er deposition decreases. 
While keeping pressure and deposition constant, as power 
decreases there is slight increment and decrement in the 
thickness achieved by this process [25]. Energy is the main 
factor responsible for  mechanical and physical properties of 
sputter �lms including their behavior to resist the crack and to 
enable their useful production [26]. Let us limit the discussion 
regarding the e�ect of process parameters on �lm deposition as 
it is a very wide area which depends on application of 
magnetron sputtering.

Recent Development and Applications
Most recent applications of magnetron sputtering are in the 
�eld of Micro electro mechanical systems (MEMS), lithium 
sulfur batteries, super capacitors, tribology, solar cell, textile 
industries, biomedical implants and instruments. Most of the 
processes related with water need to have proper pH 
monitoring. Most of the chemical materials including blood in 
our body requires pH controlling in the range of 7.35 to 7.45. 
Exceeding pH, results in serious problems. Typically, Metal 
oxide-based pH sensors have found their applications in 
chemical and biological �elds. �ey consist of attractive features 
such as insolubility, better sensing range, stability and 
mechanical strength. Metal oxides deposited by RF magnetron 
sputtering provides better PH sensitivity, fast response, good 
resolution and it also provides perspective for measuring pH 
which cannot be measured by glass electrode based pH sensors 
[27].    Mwema published a detailed review on application of 
Aluminium Nitride (AlN) thin �lms for harsh operating 
conditions, such as operating components under extreme shock 
loads, high temperature, corrosive environment and high 
pressure and forces. To measure above parameters di�erent 
MEMS are available such as acoustic sensors, transducers, 
resonators and energy harvesters. Ceramic materials AlN have 
been deposited on various metallic and nonmetallic substrates 
for various sensing applications using RF magnetron sputtering 
[28]. Research was also carried out by depositing titanium 
nitride (TiN) thin �lms onto Si and Si/SiO2 substrate by reactive 
pulsed DC magnetron sputtering for localized heating 
applications in MEMS devices [29]. Structural and optical 
properties were also improved by this process [30]. As 
nowadays we are using multi colored glasses, these can be 
obtained by multilayer coating of glasses. According to Yuan, it 
is possible to develop super hydrophobic �lm on glass which 
provides contact angle neary168.9°, which provides low surface 
energy, good stability under outdoor and ambient 
environments [31]. Zr-Cu-Ag thin �lm provides antibacterial 
coating for biomedical instruments which is amorphous, 
uniformly thick, and chemically homogeneous [32]. NiAl and 
NiAlN thin �lm was also obtained using closed �eld unbalanced 
magnetron sputtering which were deposited on glass and SS 
316L material which improves biological properties of material 
such as corrosion resistance, friction and hardness [33]. 
Properties of material can also be changed by this method such 
as orientation of Cr was changed from (110) to (200) by the 
power density which results in non-cracking behavior less than 
15N [34]. Recently target poisoning evolution is done by the 
magnetron sputtering process [35]. Rare earth material such as 
terbium is deposited on Si material which is investigated for 
optical properties and composition of terbium doped silicon 
oxide thin �lms [36]. 

 Biomedical implants made from Ti, SS 316L and CoCrMo 
alloys require hydroxyapatite coating to improve 
biocompatibility and osseointegration. RF magnetron 
sputtering provides uniform coating thickness between 0.2-1 
µm on �at surfaces result into better osseointegration with 
bones. It has also certain disadvantages like this is line of sight 
technique, time consuming, cannot coat complex substrates and 
produces amorphous coatings [37-39]. AISI 316L austenitic 

stainless steel is widely used for manufacturing of medical 
implants due to low cost, corrosion resistance and good fatigue 
strength [40]. However, these steels are prone to attack due to 
aggressive biological e�ects. To overcome this problem Ti 
coating is done on to the material in order to get good 
mechanical and corrosion resistance properties. �is process is 
also useful for material which require harder surface on outer 
side but so�er from inside. So, this can be achieved by 
depositing thin �lm of hard material such as titanium on the 
surface of the substrate. Presently there is eminent interest for 
the development of coating of transition metal nitride owing to 
its properties such as intrinsic biocompatibility, wear resistance 
and chemical stability. As the deposition of TiN coating requires 
low level of impurities and control of deposition rate, this can be 
achieved by magnetron sputtering by varying morphology and 
various crystallographic structure[41]. DLC (Diamond like 
carbon) coatings provides higher hardness, better wear 
resistance and low friction on Cr3C2-NiCr this can be achieved 
by Closed Field Unbalanced Magnetron Sputtering (CFUBMS). 
�e duplex coating using this technique maintains a stable 
coe�cient of friction and improves tribological performance 
[42]. Nowadays, conventional coating is replaced by use of 
composite coating, allowing combination of required 
properties. Lenis et al., deposited multilayer hydroxyapatite-Ag/ 
TiN-Ti coating on Ti6Al4V to make it usable for manufacturing 
of surgical instruments. Schematic architecture of developed 
multilayer coating is shown in �gure 7 [43]. Research on TiAlN 
(Ag,Cu) coating on AISI 420 steel was also carried out to make 
it suitable for applications in surgical and dental 
instrumentation by improving wear and corrosion resistance. 
According to Hernan et al., the lowest wear volume of 7.7 × 10-5 
mm3 was exhibited by coating AISI 420 steel with 17 at.% 
Ag-Cu [44,45].

paper through magnetron sputtering and used that to fabricate 
interlayers for lithium sulfur batteries to improve performance 
[46]. Recently, Shijian Yan suggested use of magnetron 
sputtering to fabricate cathode plates by reducing sulfur particle 
size for lithium sulfur batteries. �is approach simpli�ed the 
process and provided good results compared to traditional 
technologies as sulfur and carbon particles combined well 
without addition of binders. Schematic illustration to prepare 
cathode plate is given in (Figure 8) [47]. Sunlight is the most 
reliable and clean energy source available in the world which 
could be converted into useful energy. Solar cells are one of the 
devices which converts solar energy into electrical energy. Many 
researchers have experimented to improve the performance of 
solar cells by providing thin �lm of Mo, metal oxides such as 
TiO2, ZnO, Fe-Ga doped ZnO, reduce graphene oxide TiO2 
(rgo-TiO2) etc. In 1995, Sco�eld et al. suggested Mo as leading 
choice for the Copper Indium diselenide (CIS) and Copper 
Indium Gallium diselenide (CIGS) solar cells. Rashid et al. also 
deposited Mo on top of soda lime glass (SLG) using DC 
magnetron sputtering and proposed that 100W is optimized 
power to grow thin �lms on SLG as back contact material for 
fabrication of CIS and CIGS based solar cell devices [48]. Zheng 
et al. deposited Fe-Ga doped ZnO (FGZO) on glass substrates 
using RF magnetron sputtering to improve power conversion 
e�ciency of solar cells. According to him, FGZO thin �lm 
formed at substrate temperature of 440 °C resulted in the 
increase in power conversion e�ciency of 15.32% [49]. Another 
important device are the energy storage devices such as 
capacitors. Magnetron sputtering again �nds its application in 
this �eld also. Zhang et al. proposed a new method to prepare 
3D porous electrode materials based on graphene for 
application in supercapacitors. High conductivity and high 
contact interaction was observed between Co3O4 array and 
graphene a�er depositing by magnetron sputtering on Ni foam 
[50]. Mohd. Arif et al. also suggested thin �lm coating of TiN 
using DC magnetron sputtering on 304L steel substrate to make 
it suitable for super capacitor devices [51]. In addition to above 
all �elds, magnetron sputtering is also researched in the textile 
industries to develop antimicrobial textiles. Y.H. Chen et al. 
deposited antimicrobial brass coating on PET (Poly ethylene 
terephthalate) textile by HiPIMS [52]. 

Conclusions
Magnetron sputtering is a physical deposition technique which 
helps to deposit thin �lm of required materials such as metal, 
nonmetals, carbide, nitride, oxide and ceramic such as 
hydroxyapatite. From all di�erent magnetron sputtering 
con�gurations, HiPIMS and DOMS are widely used methods as 
it provides high density plasma and generates strongly adherent 
�lm at low substrate temperature. By controlling di�erent 
parameters a�ecting the sputtering process one can change 
morphology and properties of material which are bene�cial for 
mechanical, optical, electrical and biomedical applications. �e 
most important parameter is selection of power source which 
may be DC or RF depending on material. RF power source is 
useful when material to be deposited is insulating material. 
Discussion of most recent applications in the �eld of MEMS, 
lithium sulfur batteries, supercapacitors, biomedical implants 
and instruments, tribology and textile industries in the current 
study will help researchers to understand current research areas 
and to select future research directions as per their requirement. 
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Sputtering is the process in which material is deposited on the 
substrate by vaporizing material from the target. It is the process 
in which momentum exchange takes place due to collisions 
between the energetic ions and atoms. In this, vacuum is 
required which extends formation time for oxides and reduces 
impurities contamination. For the purpose of thin �lm 
deposition, various sputtering techniques are available, among 
these dc diodes sputtering systems is the basic model. 
Remaining systems are improvements on the dc diode 
sputtering system. In the dc diode sputtering system one of the 
electrodes is an anode and the other is cathode covered with 
metal target material. If the target material is insulator, the dc 
power supply is replaced by a radio frequency (RF) power 
supply to sustain sputtering glow discharge [1]. Many materials 
have been deposited by the basic sputtering process, but it has 
limitations like low deposition rate, high substrate heating 
temperature and low ionization e�ciency in the plasma. �e 
term plasma is composed of particles such as electrons and 
ionized atoms, where a particle's electric charge becomes 
neutral. Based on temperature plasma can be divided in two 
types, one is low temperature plasma, generated at low pressure 
environment by the providing electric energy to a gas, and the 
other is high temperature plasma, which evolves in an 
environment greater than 10,000 °C. Plasma is important as it 
provides the environment for deposition and also used for 

etching, ion implantation and epitaxy [2]. During sputtering, to 
extend the lifespan of electrons escaping from cathode, Penning 
had suggested the use of magnetic �elds in the 1930s [3]. Later, 
advancement in this concept led to the method known as 
magnetron sputtering. Magnetron sputtering method is being 
developed rapidly in the last three decades where it has become 
an important technique for the deposition of thin �lm for 
various purposes.  In this method, an electromagnet and 
permanent magnet or combination of both can be used to create 
a magnetic �eld [4,5]. Limitation of the basic sputtering process 
is improved by the magnetron sputtering process and its 
di�erent con�gurations. 

 Plasma con�nement is the main factor that makes a 
di�erence among all the processes. In conventional magnetrons, 
the magnetic core is the end point for magnetic �ux generated 
from a cathode which is called a balanced magnetron as shown 
in �gure 1(a). Whereas, unbalanced magnetrons have di�erent 
degrees of plasma con�nement in which an additional magnetic 
�eld is applied to the balanced magnetron as shown in �gure 
1(b) [1]. In a balanced magnetron, the target region is the place 
where plasma is con�ned, which extends dense plasma about 60 
mm in front of the target. In this process substrate inside this 
region gets deposited which results in modi�cation of 
properties and microstructure of thin �lm, whereas substrate 
outside this region lacks su�cient ion bombardment to alter the 

properties and microstructure of thin �lm. An unbalanced 
magnetron is the solution for this problem. �e second 
limitation of sputtering technique is the inability to deposit 
dense and defect free coating such as oxides and medical 
implant coating. �is advantage is obtained by the method 
known as pulsed closed �eld magnetron sputtering technique 
[6]. So now, in the next topic we will continue our discussion 
regarding recent con�gurations of magnetron sputtering and 
their advantages.

10-6 to 10-8 of an atmospheres, controlled �ow of gas like argon 
(inert gas) and oxygen (reactive gas) which raises the pressure to 
the prerequisite level, the power in the form of DC or RF (13.56 
MHz) which provides voltage about 300V to operate the 
magnetrons. It uses magnets behind the negatively charged 
target material to control ion bombardment which results in 
faster deposition rates[7,8].

complex shapes [12]. In multiple magnetron systems di�erent 
polarities are set to obtain di�erent con�gurations such as 
“mirrored” and “closed �eld”. Both the con�gurations are shown 
in (Figure 4). As shown in mirror-�eld con�guration, �eld lines 
are moving towards the chamber wall and result in loss of 
plasma. However closed �eld con�guration �eld lines are 
moving towards target materials or magnetrons which will 
result in dense plasma generation and losses to the chamber are 
less. �e e�ectiveness of closed �eld (CFUBMS) con�guration 
compared to Unbalanced (UBMS) and Mirror �eld (MFUBMS) 
is shown in (Figure 5) [13,14]. For large cylindrical targets, 
rotating magnetrons are used for coating. In this con�guration,  
the rotating tube is a cathode target and  inside the cylinder 
magnetic assembly is available[15]. 
        

 To overcome problems faced during deposition of 
insulating �lm using reactive sputtering, pulsed magnetron 
sputtering is used. A pulsed magnetron system has di�erent 
con�gurations such as a symmetric bi-polar pulsed, unipolar 
pulsed and high-power impulse magnetron system. High power 
impulse magnetron sputtering (HiPIMS) prevents arcing, 
provides more stable discharge ignition and also reduces the 
working gas pressure in vacuum chamber [16]. Detailed 
comparison between cathodic arc and HiPIMS technique was 
given by Andre Anders in his published work [17]. In the pulsed 
closed �eld unbalanced magnetron sputtering (P-CFUBMS) 
method, electrons are con�ned in the plasma by magnetic �eld 
lines between magnetrons and increase ion density which leads 
to high level of ion bombardment. �is process can also be used 
to deposit alloy nitrides, oxides and carbides with the required 
composition and multilayer deposition by controlling the 
power density on multiple targets and partial pressure of 
reactive gas. However, a limited amount of research has been 
conducted on P-CFUBMS in reactive sputtering [18,19]. 
According to Avino et al., densi�cation in the coating of objects 
can be improved using HiPIMS compared to direct current 
magnetron sputtering [20]. Recently, a new method is 
developed named the dual mode of deep oscillation magnetron 
sputtering (DOMS). �e dual mode magnetron sputtering 
system solves the problem of disappearing anode, which arises 
in reactive sputtering of dielectric coating. A bipolar power 
source can be implemented in Dual DOMS to avoid long 
intervals between micropulses. V.O. Oskirko et al. provided 
schematic of DOMS and dual DOMS modes with voltage 
impulse curves as shown in (Figure 6) [21].

 If we summarize, it can be written as dual target mode of 
deep oscillation magnetron sputtering provides advantages over 
high power impulse magnetron sputtering and high-power 
impulse magnetron sputtering provides advantages over direct 
current magnetron sputtering. 

Parameters Affecting Magnetron Sputtering
Main parameters a�ecting the sputtering process are: 
Sputtering power, vacuum, sputtering gas, pressure inside 
chamber, distance between substrate and target material, 
temperature of substrate, target composition and magnets 
con�guration [22,23]. According to P. Chelvanathan and his 
colleagues, during deposition of Mo thin �lm, growth rate was 
higher for higher RF Power and operating pressure. Higher 
kinetic energy of incident Mo atoms during deposition 
improves the crystallinity property [24].  M. Zhijun et al. has 
considered di�erent sputtering parameters such as power, 
pressure, time, thickness and deposition rate. From his results it 
was observed that keeping power and deposition time constant, 
pressure and thickness obtained a�er deposition decreases. 
While keeping pressure and deposition constant, as power 
decreases there is slight increment and decrement in the 
thickness achieved by this process [25]. Energy is the main 
factor responsible for  mechanical and physical properties of 
sputter �lms including their behavior to resist the crack and to 
enable their useful production [26]. Let us limit the discussion 
regarding the e�ect of process parameters on �lm deposition as 
it is a very wide area which depends on application of 
magnetron sputtering.

Recent Development and Applications
Most recent applications of magnetron sputtering are in the 
�eld of Micro electro mechanical systems (MEMS), lithium 
sulfur batteries, super capacitors, tribology, solar cell, textile 
industries, biomedical implants and instruments. Most of the 
processes related with water need to have proper pH 
monitoring. Most of the chemical materials including blood in 
our body requires pH controlling in the range of 7.35 to 7.45. 
Exceeding pH, results in serious problems. Typically, Metal 
oxide-based pH sensors have found their applications in 
chemical and biological �elds. �ey consist of attractive features 
such as insolubility, better sensing range, stability and 
mechanical strength. Metal oxides deposited by RF magnetron 
sputtering provides better PH sensitivity, fast response, good 
resolution and it also provides perspective for measuring pH 
which cannot be measured by glass electrode based pH sensors 
[27].    Mwema published a detailed review on application of 
Aluminium Nitride (AlN) thin �lms for harsh operating 
conditions, such as operating components under extreme shock 
loads, high temperature, corrosive environment and high 
pressure and forces. To measure above parameters di�erent 
MEMS are available such as acoustic sensors, transducers, 
resonators and energy harvesters. Ceramic materials AlN have 
been deposited on various metallic and nonmetallic substrates 
for various sensing applications using RF magnetron sputtering 
[28]. Research was also carried out by depositing titanium 
nitride (TiN) thin �lms onto Si and Si/SiO2 substrate by reactive 
pulsed DC magnetron sputtering for localized heating 
applications in MEMS devices [29]. Structural and optical 
properties were also improved by this process [30]. As 
nowadays we are using multi colored glasses, these can be 
obtained by multilayer coating of glasses. According to Yuan, it 
is possible to develop super hydrophobic �lm on glass which 
provides contact angle neary168.9°, which provides low surface 
energy, good stability under outdoor and ambient 
environments [31]. Zr-Cu-Ag thin �lm provides antibacterial 
coating for biomedical instruments which is amorphous, 
uniformly thick, and chemically homogeneous [32]. NiAl and 
NiAlN thin �lm was also obtained using closed �eld unbalanced 
magnetron sputtering which were deposited on glass and SS 
316L material which improves biological properties of material 
such as corrosion resistance, friction and hardness [33]. 
Properties of material can also be changed by this method such 
as orientation of Cr was changed from (110) to (200) by the 
power density which results in non-cracking behavior less than 
15N [34]. Recently target poisoning evolution is done by the 
magnetron sputtering process [35]. Rare earth material such as 
terbium is deposited on Si material which is investigated for 
optical properties and composition of terbium doped silicon 
oxide thin �lms [36]. 

 Biomedical implants made from Ti, SS 316L and CoCrMo 
alloys require hydroxyapatite coating to improve 
biocompatibility and osseointegration. RF magnetron 
sputtering provides uniform coating thickness between 0.2-1 
µm on �at surfaces result into better osseointegration with 
bones. It has also certain disadvantages like this is line of sight 
technique, time consuming, cannot coat complex substrates and 
produces amorphous coatings [37-39]. AISI 316L austenitic 

stainless steel is widely used for manufacturing of medical 
implants due to low cost, corrosion resistance and good fatigue 
strength [40]. However, these steels are prone to attack due to 
aggressive biological e�ects. To overcome this problem Ti 
coating is done on to the material in order to get good 
mechanical and corrosion resistance properties. �is process is 
also useful for material which require harder surface on outer 
side but so�er from inside. So, this can be achieved by 
depositing thin �lm of hard material such as titanium on the 
surface of the substrate. Presently there is eminent interest for 
the development of coating of transition metal nitride owing to 
its properties such as intrinsic biocompatibility, wear resistance 
and chemical stability. As the deposition of TiN coating requires 
low level of impurities and control of deposition rate, this can be 
achieved by magnetron sputtering by varying morphology and 
various crystallographic structure[41]. DLC (Diamond like 
carbon) coatings provides higher hardness, better wear 
resistance and low friction on Cr3C2-NiCr this can be achieved 
by Closed Field Unbalanced Magnetron Sputtering (CFUBMS). 
�e duplex coating using this technique maintains a stable 
coe�cient of friction and improves tribological performance 
[42]. Nowadays, conventional coating is replaced by use of 
composite coating, allowing combination of required 
properties. Lenis et al., deposited multilayer hydroxyapatite-Ag/ 
TiN-Ti coating on Ti6Al4V to make it usable for manufacturing 
of surgical instruments. Schematic architecture of developed 
multilayer coating is shown in �gure 7 [43]. Research on TiAlN 
(Ag,Cu) coating on AISI 420 steel was also carried out to make 
it suitable for applications in surgical and dental 
instrumentation by improving wear and corrosion resistance. 
According to Hernan et al., the lowest wear volume of 7.7 × 10-5 
mm3 was exhibited by coating AISI 420 steel with 17 at.% 
Ag-Cu [44,45].

paper through magnetron sputtering and used that to fabricate 
interlayers for lithium sulfur batteries to improve performance 
[46]. Recently, Shijian Yan suggested use of magnetron 
sputtering to fabricate cathode plates by reducing sulfur particle 
size for lithium sulfur batteries. �is approach simpli�ed the 
process and provided good results compared to traditional 
technologies as sulfur and carbon particles combined well 
without addition of binders. Schematic illustration to prepare 
cathode plate is given in (Figure 8) [47]. Sunlight is the most 
reliable and clean energy source available in the world which 
could be converted into useful energy. Solar cells are one of the 
devices which converts solar energy into electrical energy. Many 
researchers have experimented to improve the performance of 
solar cells by providing thin �lm of Mo, metal oxides such as 
TiO2, ZnO, Fe-Ga doped ZnO, reduce graphene oxide TiO2 
(rgo-TiO2) etc. In 1995, Sco�eld et al. suggested Mo as leading 
choice for the Copper Indium diselenide (CIS) and Copper 
Indium Gallium diselenide (CIGS) solar cells. Rashid et al. also 
deposited Mo on top of soda lime glass (SLG) using DC 
magnetron sputtering and proposed that 100W is optimized 
power to grow thin �lms on SLG as back contact material for 
fabrication of CIS and CIGS based solar cell devices [48]. Zheng 
et al. deposited Fe-Ga doped ZnO (FGZO) on glass substrates 
using RF magnetron sputtering to improve power conversion 
e�ciency of solar cells. According to him, FGZO thin �lm 
formed at substrate temperature of 440 °C resulted in the 
increase in power conversion e�ciency of 15.32% [49]. Another 
important device are the energy storage devices such as 
capacitors. Magnetron sputtering again �nds its application in 
this �eld also. Zhang et al. proposed a new method to prepare 
3D porous electrode materials based on graphene for 
application in supercapacitors. High conductivity and high 
contact interaction was observed between Co3O4 array and 
graphene a�er depositing by magnetron sputtering on Ni foam 
[50]. Mohd. Arif et al. also suggested thin �lm coating of TiN 
using DC magnetron sputtering on 304L steel substrate to make 
it suitable for super capacitor devices [51]. In addition to above 
all �elds, magnetron sputtering is also researched in the textile 
industries to develop antimicrobial textiles. Y.H. Chen et al. 
deposited antimicrobial brass coating on PET (Poly ethylene 
terephthalate) textile by HiPIMS [52]. 

Conclusions
Magnetron sputtering is a physical deposition technique which 
helps to deposit thin �lm of required materials such as metal, 
nonmetals, carbide, nitride, oxide and ceramic such as 
hydroxyapatite. From all di�erent magnetron sputtering 
con�gurations, HiPIMS and DOMS are widely used methods as 
it provides high density plasma and generates strongly adherent 
�lm at low substrate temperature. By controlling di�erent 
parameters a�ecting the sputtering process one can change 
morphology and properties of material which are bene�cial for 
mechanical, optical, electrical and biomedical applications. �e 
most important parameter is selection of power source which 
may be DC or RF depending on material. RF power source is 
useful when material to be deposited is insulating material. 
Discussion of most recent applications in the �eld of MEMS, 
lithium sulfur batteries, supercapacitors, biomedical implants 
and instruments, tribology and textile industries in the current 
study will help researchers to understand current research areas 
and to select future research directions as per their requirement. 
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